Типы гипертрофии скелетных мышц человека

Классификация мышц

Мышцы человека классифицируют по форме, положению на теле, направлению волокон, выполняемой функции, по отношению к суставам и др. (табл. 3).

Таблица 3

Форма мышц в зависимости от расположения мышечных волокон к сухожилию

По форме По отношению к суставам По расположению в теле человека По направлению волокон По выполняемой функции По отношению к частям тела
Длинные

Короткие

Широкие

Односуставные

Двусуставные

Многосуставные

Сгибатели

Разгибатели

Отводящие

Приводящие

Супинаторы

Пронаторы

Сфинктеры

Расширители

Поверхностные

Глубокие

Круговые

Параллельные

Лентовидные

Веретенообразные

Зубчатые

Косые

1)одноперистые;

2)двуперистые;

3) многоперистые

Дыхательные

Жевательные

Мимические

Головы

Шеи

Туловища:

1) груди;

2) спины;

3) живота

Конечностей:

1) верхних;

2)нижних

Форма мышц может быть очень разнообразной, она зависит от расположения мышечных волокон к сухожилию (рис. 54).

Рис. 54. Форма мышц:

А — веретенообразная; Б — двуглавая мышца; В — двубрюшная мышца; Г— мышца с сухожильными перемычками; Д — двухперистая мышца; Е— одноперистая мышца; 1— брюшко мышцы; 2, 3— сухожилия мышцы; 4 — сухожильная перемычка; 5 — промежуточное сухожилие

Чаще встречаются веретенообразные мышцы. В них пучки волокон ориентированы параллельно длинной оси мышцы, а брюшко, постепенно сужаясь, переходит в сухожилие. Мышцы, у которых мышечные волокна прикрепляются к сухожилию только с одной стороны, называются одноперистыми, а с двух сторон — двухперистыми. Мышцы могут иметь одну или несколько головок, отсюда и название: двуглавая, трехглавая, четырехглавая. Некоторые мышечные волокна расположены циркулярно и образуют мышцы сфинктеры, которые окружают ротовое и заднепроходное отверстия и др.

Название мышцы может отражать ее форму (ромбовидная, трапециевидная, квадратная), размер (длинная, короткая, большая, малая), направление мышечных пучков или самой мышцы (косая, поперечная), выполняемую ею функцию (сгибание, разгибание, вращение, поднимание).

По отношению к суставам мышцы располагаются неодинаково, что определяется их строением и функцией. Если мышцы действуют на один сустав, они называются односуставными, если же перекидываются через два сустава и больше — двусуставными и многосуставными. Некоторые мышцы могут брать начало от костей и прикрепляться к костям, не соединяясь при помощи суставов (например, подъязычная, челюстно-подъязычная, мимические мышцы, мышцы дна рта, мышцы промежности).

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги – нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания – непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • Мышечная дистрофия характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения – хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Формирование (миогенез)

Миобласты — клетки-предшественники мышц. Во время беременности, а затем в детстве или во время заживления после травмы эти клетки делятся и сливаются вместе, образуя мышечные трубки. Это длинные и многоядерные клетки (несколько ядер). Затем мышечные трубки синтезируют сократительные белки (актин и миозин) и трансформируются в миоциты. Миоциты более или менее длинные в зависимости от мышцы (они могут достигать 35  см в длину) и иметь диаметр от 10 до 100 микрометров. Ядра отодвигаются к периферии клетки, и большая часть цитоплазмы занята сократительными белками и саркоплазматической сетью. Миоциты не могут делиться, а растут за счет увеличения объема цитоплазмы. В мышцах взрослого человека количество миобластов (или сателлитных клеток) ограничено, они играют роль только в восстановлении поврежденных миоцитов в результате усилий необычной интенсивности или продолжительности.

Моя лаборатория

Мышечные ткани образованы клетками, обладающими свойствами возбудимости и сократимости. Возбудимость — это способность клеток отвечать на внешние раздражители, а сократимость — способность клеток этих тканей менять свои размеры под действием этих самых раздражителей. Дело в том, что в состав мышечных тканей входят особые сократительные белки — актин и миозин, которые, взаимодействуя между собой, уменьшают длину мышечных клеток, и вся мышца сокращается (рис. 24).

Поперечно-полосатые мышечные клетки (волокна) очень тонкие, но длинные. Мышечные сократительные белки расположены в этих клетках в строгом порядке и образуют регулярно чередующиеся светлые и тёмные полоски поперёк волокна мышцы, хорошо различимые под микроскопом. Поэтому скелетные мышцы и получили название поперечно-полосатых. Сокращение клеток гладкой мышечной ткани обеспечивается теми же сократительными белками, что и клеток поперечно-полосатых мышц, но эти белки расположены не так упорядоченно, поэтому поперечная ис- черчеппость клеток не видна.

Новые понятия

Брюшко скелетной мышцы, сухожилие, фасция. Мимические мышцы. Брюшной пресс. Диафрагма

Ответьте на вопросы

1. Какова роль скелетных мышц в работе опорно-двигательной системы и всего организма?
2. Каково строение скелетной мышцы?

Выполните задание

Охарактеризуйте особенности основных групп скелетных мышц в связи с их расположением в организме. Назовите наиболее развитые мышцы в организме человека и опишите их функции.

ПОДУМАЙТЕ!

Какое значение для мышцы имеют многочисленные кровеносные сосуды и нервные окончания, пронизывающие ее?

Строение скелетных мышц

Мышечная ткань содержит множество длинных волокон (миоцитов), соединенных в пучок (от 10 до 50 миоцитов в одном пучке). Из этих пучков формируется брюшко скелетной мышцы. Каждый пучок миоцитов, также как и сама мышца, покрыт плотной оболочкой из соединительной ткани. На концах оболочка переходит в сухожилия, которые прикрепляются к костям в нескольких точках.

Между пучками мышечных волокон проходят кровеносные сосуды (капилляры) и нервные волокна.

Каждое волокно состоит из более мелких нитей — миофибрилл. Они состоят из еще более мелких частиц, называемых саркомерами. Они произвольно сокращаются под воздействием нервных импульсов, посылаемых от головного и спинного мозга, производя движение суставов. Хотя наши движения находятся под нашим сознательным контролем, мозг может узнать паттерны движений, так что мы можем выполнять определенные задачи, такие как ходьба, не думая.

Силовые тренировки способствуют увеличению количества миофибрилл мышечного волокна и их поперечного сечения. Сначала увеличивается сила мышцы, а затем — её толщина. Но количество самих мышечных волокон не меняется и оно заложено генетически. Отсюда вывод: те, у кого мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц силовыми тренировками, нежели те, у кого мышцы содержат меньше волокон.

Толщина и количество миофибрилл (поперечное сечение мышцы) определяет силу скелетной мышцы. Показатели силы и мышечной массы возрастают не одинаково: когда мышечная масса увеличивается в два раза, то сила мышц становится в три раза больше.

Есть два типа волокон скелетной мышцы:

  • медленные (ST-волокна)
  • быстрые (FT-волокна)

Медленные волокна также называют красными, поскольку они содержат большое количество белка красного цвета — миоглобина. Эти волокна выносливые, но работают с нагрузкой в пределах 20-25% от максимальной силы мышц.

Быстрые волокна содержат мало миоглобина и поэтому их еще называют белыми. Они сокращаются в два раза быстрее медленных волокон и способны развить силу в десять раз больше.

Когда нагрузка меньше 25% от максимальной мышечной силы, работают медленные волокна. А когда наступает их истощение, работать начинают быстрые волокна. Когда будет израсходована и их энергия, наступает истощение и мышце требуется отдых. Если нагрузка сразу большая, то оба вида волокон работают одновременно.

Разные типы мышц, выполняющие разные функции, имеют разное соотношение быстрых и медленных волокон. Например, бицепс содержит больше быстрых волокон, чем медленных, а камбаловидная мышца состоит в основном из медленных. Какой тип волокон будет преимущественно задействован в работе в данный момент зависит не от скорости выполнения движения, а от усилия, которое необходимо на него потратить.

Соотношение быстрых и медленных волокон в мышцах каждого человека заложено генетически и неизменно всю жизнь.

Скелетные мышцы получили свои названия исходя из формы, расположения, количества мест прикрепления, места присоединения, направления мышечных волокон, функций.

Здоровье и болезни

Упражнение

Упражнения часто рекомендуется в качестве средства улучшения двигательных навыков , на ловкость и силу мышц. Упражнения по-разному влияют на мышцы, соединительную ткань, кости и нервы , стимулирующие мышцы.

Болезни

Эти мышцы чувствительны к нескольким патологиям, специфическим или нет.

  • Нервно-мышечные расстройства
  • Миастения , миастенический синдром Ламберта-Итона , столбняк , ботулизм
  • В миопатии являются все заболевания , влияющие на саму мышцу, а не на его нервной регуляции.
  • В макрофагах миозит также вызывают различные боли , а плохое общее состояние , в расстройство сна и когнитивный расстройства .
  • В мышечной дистрофии являются большая группа заболеваний, в основном , наследственное , где нарушена целостность мышц. Это приводит к постепенной потере сил, сильному привыканию и сокращению жизни.
  • Воспалительные мышечные расстройства
    • Ревматическая полимиалгия (или «мышечный ревматизм»)
    • Дерматомиозит , миозит с тельцами включения и другие миозиты (включая старый полимиозит)
  • Рабдомиолиз
  • Опухоли мышц: рабдомиома и рабдомиосаркома

Около века, патологической мышечной гипертрофии, нейрогенного происхождения наблюдались (часто болезненное увеличение теленка в пациенте мужского пола от 32 до 60 лет. Часто история lumbosciatica ( грыжа межпозвоночного диска и аномально узкие поясничный каналы, составляющие 68% причин), лучевая терапия или травма , в одном случае вызванная пулевым разрезом седалищного нерва .

Функции

Поперечно-полосатые мышцы обладают 5 основными свойствами:

  • Возбудимость: свойство мышцы реагировать на стимуляцию, вызывая электрические явления с помощью химических веществ;
  • Сократимость: свойство мышечной ткани с силой сокращаться в присутствии соответствующей стимуляции и, таким образом, мобилизовать костные элементы, к которым прикреплены ее волокна; мышца может сокращаться без какого-либо движения (режим изометрического сокращения) или сокращаться с появлением движения, либо с общим сокращением мышцы (приближение точек прикрепления, режим концентрического сокращения), либо с удлинением последнего ( расстояние от точек вставки, режим эксцентрического сжатия);
  • Эластичность: свойство мышечной ткани возвращать свою первоначальную форму после прекращения сокращения;
  • Тонус: свойство мышцы находиться в постоянном напряжении ( мышечный тонус );
  • Пластичность: свойство мышцы изменять свою структуру в зависимости от выполняемой работы и адаптироваться к типу усилия.

Скелетные мышцы выполняют четыре важные функции: мобилизация тела во внешней среде, поддержание общей осанки тела, стабильность суставов и выработка тепла.

Типы мышц человека

В зависимости от строения, функций и расположения вся мышечная ткань в организме человека делится на три группы.

  • Гладкие мышцы составляют стенки внутренних органов и кровеносных сосудов. Они работают автоматически, непрерывно, не зависимо от сознания. С их помощью передвигается пищевой комок по пищеварительной системе, работает мочевой пузырь, поднимается или опускается артериальное давление.
  • Сердечные мышцы располагаются только в сердце, служат для перекачивания крови. Работают тоже непрерывно и ритмично.
  • Скелетные мышцы или поперечнополосатые составляют каркас тела. Именно эти мышцы интересны нам, т.к. именно их мы пытаемся накачать. Они отвечают не только за различные движения, но и за поддержание равновесия, определенного положения. Даже в покое, когда человек сидит или лежит, многие из них работают. Усилием воли человек может заставить их сокращаться или расслабляться. Эти волокна активно реагируют на нервные импульсы, с помощью нагрузок можно увеличить их силу и объем. Но непрерывная работа приводит к их утомлению.

Физические тренировки направлены на укрепление скелетных мышц. Но в организме все взаимосвязано.

Крепкий мышечный корсет поддерживает правильную работу внутренних органов, что приводит к улучшению пищеварения. Благодаря этому мышечные волокна получают больше питательных веществ и могут выдерживать еще большие нагрузки.

Так же связаны скелетные мышцы и с работой сердца. Во время тренировки укрепляется сердечная мышца. Это приводит к улучшению кровообращения и обеспечения миоцитов кислородом.

Свойства скелетных мышц

Поперечнополосатые или скелетные мышцы человека имеют самое сложное строение. Именно они составляют часть опорно-двигательного аппарата, на них направлены физические тренировки. Эти мышцы выполняют множество важных функций:

  • поддерживают позу;
  • участвуют в передвижении;
  • в перемещении частей тела;
  • защищают внутренние органы;
  • регулируют дыхание, кровообращение, температуру тела.

Они способны проводить нервные импульсы и под их влиянием сокращаться

Важной также является способность этих волокон к расслаблению и сохранению состояния покоя. Характеризуются они такими свойствами:

  • растяжимость – увеличение длины под действием силы, большинство волокон способно растягиваться на 150%;
  • эластичность – восстановление первоначального вида после прекращения действия силы;
  • сократимость – способность сжиматься, обычно на 30-50% длины;
  • сила – удержание определенного груза

Скелетные мышцы могут функционировать в динамическом режиме, когда происходит их активное сокращение и растяжение, а также в изометрическом режиме. Это статическое напряжение, не приводящее к изменению длины волокон.

Так работают мышцы, поддерживающие вертикальное положение тела и работающие на преодоление силы тяжести.

Особенность скелетных мышц также зависит от типа и строения волокон.

  • Красные или медленные волокна содержат много митохондрий. Расположены глубоко, в основном это отводящие мышцы и разгибатели. Возбуждаются медленно, требуют внешней стимуляции. Скорость проведения нервного импульса – до 8 м/с. Активно используют кислород, окисляют углеводы и жиры, участвуют в теплообмене.
  • Быстрые или белые мышечные волокна расположены поверхностно. Это сгибатели и приводящие. Способны работать при дефиците кислорода. Сокращаются быстро, скорость проведения импульса до 40 м/с. Но то, какие волокна участвуют в движении, зависит не от скорости, а от приложенного усилия.

Считается, что соотношение разных мышечных волокон определяется генетически. Этим можно объяснить природную склонность людей к определенным видам спорта. Но при правильном распределении нагрузки можно заставить мышцы приспособиться и выполнять любую работу.

Фасции и вспомогательный аппарат скелетных мышц

К вспомогательному аппарату скелетных мышц относится ряд специальных анатомических образований, облегчающих работу мышц. Среди них различают фасции, синовиальные влагалища и синовиальные сумки, мышечные блоки и сесамовидные кости.

Мышечная фасция (fascia musculorum) — это плотная соединительнотканная оболочка, которая в виде футляра покрывает каждую мышцу. Более плотные листки фасций образуют ложа для групп мышц (compartimenta), объединяемых по топографическому или функциональному признаку.

Фасции отграничивают мышцы, способствуя их относительно независимому сокращению. Вместе с тем фасции служат местом начала или прикрепления мышечных волокон. До 40 % мышечных волокон могут начинаться или прикрепляться к соединительнотканным компонентам мышцы.

Поэтому фасции вместе с соединительнотканным каркасом мышц образуют так называемый мягкий остов (скелет), ибо они также служат для передачи мышечных усилий на костные рычаги.

В области дистальных отделов конечностей, где многочисленные сухожилия переходят на кисть или стопу, в фасции образуются утолщенные участки в виде браслетов, которые при сокращении мышц удерживают сухожилия около костей и выполняют роль блоков, благодаря чему изменяется угол при передаче мышечной тяги.

Они так и называются: удерживатели сухожилий мышц (retinaculum).

Синовиальные влагалища окутывают длинные сухожилия, облегчая их скольжение вблизи костей и различных блоков при сокращении мышц.

Это специальные футляры, построенные из двух листков: внутреннего и наружного, между которыми имеется узкое пространство, заполненное синовиальной жидкостью, которая и облегчает скольжение сухожилия.

Синовиальные сумки представляют собой замкнутые или иногда сообщающиеся с суставом полости, заполненные синовиальной жидкостью.

Расположены они между мышцами или между мышцей и костью, между кожей и костью в местах наибольшей механической подвижности тканей. Они также служат для облегчения смещения тканей при сокращении мышц. Синовиальных сумок много в области коленного и плечевого суставов.

Сесамовидные кости. В толще сухожилий некоторых мышц могут развиваться специальные кости, которые необходимы для изменения угла прикрепления мышц и, соответственно, изменения угла направления силы мышечной тяги. Наиболее крупной из сесамовидных костей является надколенник.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

КРОВЕНОСНЫЕ СОСУДЫ СКЕЛЕТНОЙ МЫШЦЫ

Давайте подробнее рассмотрим состав, строение и функции еще одного важного компонента скелетной мышцы – ее кровеносных сосудов

Состав и строение

Кровеносные (артерии и вены) и лимфатические сосуды входят в скелетную мышцу и выходят из нее вместе с нервами. Через кровеносные сосуды мышца получает питательные вещества, кислород, гормоны и отдает продукты обмена веществ (углекислый газ, воду, соли и т.д.). Артерии, проникая в мышцу через эпимизий, ветвятся в перимизии. Ветвление продолжается и в эндомизии, где располагаются капилляры кровеносных сосудов. Они окружают каждое мышечное волокно в виде сети. При этом на одно мышечное волокно приходится от трех до шести капилляров. Диаметр капилляров составляет 7-8 мкм.

Рисунок 1. Микрофотоснимок сети микроциркуляции в скелетной мышце. Эта фотография — изображение среза скелетной мышцы крысы после окраски и фиксации. Кровеносные сосуды расширены и могут наблюдаться капилляры. Вокруг каждого мышечного волокна расположено несколько капилляров (Y. Kano, K. Sakuma, 2013)

Процесс диффузии кислорода и субстратов осуществляется через стенки мышечных волокон. Стенки капилляров очень тонкие (1,5 мкм). Клетки, образующие стенки, имеют просветы, через которые вещества входят в капилляр и выходят из него.

Особенности кровеносной системы

Особенностью кровеносной системы  является то, что артериальные капилляры постепенно переходят в венозные и выводят из организма ненужные мышце вещества. Однако в лимфатической системе капилляры берут начало от мышечных волокон.

Количество капилляров, окружающих мышечные волокна, зависит от типа и размера мышечного волокна. В основном у медленных мышечных волокон наблюдается больше капилляров, по сравнению с быстрыми. У мышечных волокон IIA типа капилляров больше, чем у волокон IIB типа.

Влияние физической нагрузки на капилляры

В покое часть капилляров, окружающих мышечные волокна не функционируют. Однако при выполнении физических нагрузок количество функционирующих капилляров увеличивается в два раза. Это явление называется рабочей гиперемией.

Аэробная и силовая тренировка приводит к тому, что количество капилляров, приходящихся на одно мышечное волокно, увеличивается.  Для обозначения обеспечения мышечных волокон капиллярами используется понятие капилляризация. Термин васкуляризация означает образование новых кровеносных сосудов и прорастание их в ткани.

С возрастом количество капилляров, окружающих мышечные волокна, уменьшается. Так, в возрасте от 65 до 77 лет количество капилляров, окружающих мышечные волокна, уменьшается на 20 процентов.

Рекомендую для получения большей информации посмотреть монографию В.И. Козлова и И.О. Тупицина «Микроциркуляция при мышечной деятельности».

Литература

Козлов В.И. Микроциркуляция при мышечной деятельности / В. И. Козлов, И. О. Тупицин. – М.: Физкультура и спорт, 1982.- 135 с.

Kano, Y. Effect of aging on the relationship between capillary supply and muscle fiber size / Y. Kano, K. Sakuma //Advances in Aging Research, 2013– Vol.2.– No.1.– З. 37-42.

викторина

1. Ученому предлагается проверить два неизвестных образца мышц и определить, какой из них является гладкомышечной, а какой – скелетной. Однако ученый вчера разбил свой микроскоп. Какой из следующих методов позволит ученому идентифицировать гладкую мышцу из скелетной мышцы?A. Положите ткани в решение содержащий бесплатный АТФB. Поместите ткани в раствор, содержащий ионы кальцияC. Тот, кто выглядит сильнее, скелетная мышца

Ответ на вопрос № 1

верно. Помещая ткани в раствор свободной АТФ, мы можем различить гладкую и скелетную мышцы. Скелетные мышцы уже имеют доступ к АТФ и не будут сокращаться при введении в это решение. Гладкая мышца использует ряд белков для ингибирования свободной АТФ и предотвращения работы миозина. В растворе, содержащем много свободного АТФ, гладкие мышцы будут сокращаться. Обе ткани будут сокращаться в растворе ионов кальция, потому что кальций индуцирует обе системы.

2. Гладкомышечные клетки связаны друг с другом через области, называемые адгезивными соединениями. Эти области содержат много волокнистых белков для силы, когда клетки тянутся друг против друга. Соединения также содержат небольшие промежутки, которые позволяют клеточным мембранам двух соседних клеток соединяться. Какова функция этих щелевых соединений, как они называются?A. Отверстия увеличивают прочность соединенияB. Нервные импульсы и химические вещества можно перенести сюдаC. Клетки проходят АТФ через отверстия

Ответ на вопрос № 2

В верно

Когда сокращение происходит в гладкой мышечной ткани, важно, чтобы остальные клетки реагировали. Найденные щелевые соединения между клетками обеспечивают прохождение нервного импульса или химического сигнала, который начал сокращение

Это гарантирует, что многие клетки сжимаются одновременно, производя желаемый эффект для организм,

3. Ниже приведены заявления о гладких мышцах. Выберите неправильное утверждение.A. Гладкая мышца использует те же моторные белки, что и скелетная мышцаB. Гладкая мышца располагается так же, как и скелетная мышцаC. Гладкая мышца не имеет борозд

Ответ на вопрос № 3

В верно. Гладкая мышца не имеет борозд, потому что она расположена иначе, чем скелетная мышца. Расположение не производит темные полосы в клетках, но используются те же моторные белки (актин и миозин).

Клиническое значение [ править ]

Заболевания скелетных мышц называются миопатиями , а болезни нервов — невропатиями . Оба могут влиять на функцию мышц или вызывать мышечную боль и подпадать под действие нервно-мышечных заболеваний . Миопатии были смоделированы с помощью систем клеточных культур мышц, взятых из биопсий здоровых или больных тканей . Другим источником скелетных мышц и клеток — предшественников обеспечивается направленной дифференцировки из плюрипотентных стволовых клеток .

Исследование править

При исследовании свойств скелетных мышц используется множество методов. Электрическая стимуляция мышц используется для определения силы и скорости сокращения при различных частотах стимуляции, которые связаны с составом волокон и их сочетанием в отдельной группе мышц. Тестирование мышц in vitro используется для более полной характеристики свойств мышц.

Электрическая активность, связанная с сокращением мышц, измеряется с помощью электромиографии (ЭМГ). ЭМГ — это распространенный метод, используемый во многих дисциплинах в области физических упражнений и реабилитации. У скелетных мышц есть два физиологических ответа: расслабление и сокращение. Механизмы, вызывающие эти реакции, генерируют электрическую активность, измеряемую с помощью ЭМГ. В частности, ЭМГ может измерять потенциал действия скелетной мышцы, который возникает из-за гиперполяризации моторных аксонов от нервных импульсов, посылаемых в мышцу (1). ЭМГ используется в исследованиях для определения того, активируется ли интересующая скелетная мышца, количества генерируемой силы и индикатора мышечной усталости.. Двумя типами ЭМГ являются внутримышечная ЭМГ и наиболее распространенная поверхностная ЭМГ. Сигналы ЭМГ намного сильнее, когда скелетные мышцы сокращаются и расслабляются. Однако для более мелких и глубоких скелетных мышц сигналы ЭМГ уменьшаются и поэтому рассматриваются как менее ценный метод измерения активации. В исследованиях с использованием ЭМГ, максимальное произвольное сокращение (MVC) обычно выполняется на интересующей скелетной мышце, чтобы иметь справочные данные для остальных записей ЭМГ во время основного экспериментального тестирования той же самой скелетной мышцы.

Б.К. Педерсен и ее коллеги провели исследования, показывающие, что скелетные мышцы функционируют как эндокринный орган, секретируя цитокины и другие пептиды , которые теперь называются миокинами . Считается, что миокины, в свою очередь, способствуют пользе для здоровья физических упражнений .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector