Типы мышечных волокон

Содержание:

Саркоплазма мышечных волокон

Объем внутри мышечного волокна заполнен желеобразным коллоидным раствором – саркоплазмой. В ней протекают активные биохимические процессы расщепления и синтеза разнообразных органических веществ, обеспечивающих энергетическое снабжение сократительного аппарата.

Внутри саркоплазмы мышечного волокна содержатся:

  • органеллы специального назначения (миофибриллы);
  • органеллы общего назначения,
  • включения.

Об органеллах специального назначения (миофибриллах) уже было подробно рассказано, также очень подробно описаны органеллы общего назначения: ядра, митохондрии, саркоплазматический ретикулум, рибосомы, лизосомы, комплекс Гольджи. Теперь подробнее остановимся на включениях. Включения мышечного волокна содержат: белки, экстрактивные вещества, углеводы, жиры и многое другое.

Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

Белки саркоплазмы

На долю белков саркоплазмы приходится 25-30% белков мышц.

Во-первых, к белкам саркоплазмы можно отнести все белки, которые необходимы для миофибриллогенеза (синтеза миофибрилл) и для обеспечения структуры мышечного волокна. Так как наши мышечные волокна постоянно разрушаются и синтезируются, следовательно, в саркоплазме должны обязательно присутствовать белки  из которых строятся миофибриллы. К таким белкам относятся: миозин (основной белок толстого филамента), актин, тропонин и тропомиозин (основные белки тонкого филамента), титин  (соединяет толстый филамент с Z-диском), десмин, виментин, синемин, дистрофин, спектрин (белки, участвующие в привязке миофибрилл друг к другу и к сарколемме мышечного волокна).

Во-вторых, одним из необходимых компонентов саркоплазмы является белок миоглобин. Посредством этого белка осуществляется перенос кислорода внутри мышечного волокна.

В-третьих, в саркоплазме находятся различные ферменты. Напомню, что ферменты — это особые белки, выполняющие функцию катализаторов химических реакций. Среди саркоплазматических белков можно выделить следующие:

  • АТФ-азу — фермент, принимающий активное участие в сокращении мышечного волокна, так как он является катализатором реакции гидролиза, при которой происходит выделение энергии.
  • Креатинкиназу — фермент, который участвует в креатинфосфатном пути ресинтеза АТФ. При повреждении мышечных волокон концентрация креатинкиназы в крови возрастает.
  • Основные ферменты гликолиза: фосфорилазу и фосфофруктокиназу, расщепляющие гликоген или глюкозу до пировиноградной или молочной кислоты.

Помимо белков в саркоплазме содержатся аминокислоты, из которых синтезируются белки. В большом количестве имеется глутаминовая кислота и глутамин.

Экстрактивные вещества

В саркоплазме также содержатся небелковые азотсодержащие вещества. Среди них: АТФ, АДФ и АМФ. К экстрактивным веществам относится креатинфосфат, креатин и креатинин.

Углеводы саркоплазмы

В саркоплазме имеется основной углевод – гликоген. Свободной глюкозы в саркоплазме мало. При мышечном сокращении в саркоплазме накапливаются продукты углеводного обмена – лактат и пируват.

Также в саркоплазме мышечных волокон имеются капельки жира. И, конечно, одним из основным компонентов саркоплазмы является вода.

Сокращение мышечного волокна

При сокращении мышечного волокна в саркоплазму из саркоплазматического ретикулума выделяются ионы кальция. После окончания сокращения мышечного волокна ионы кальция закачиваются обратно в саркоплазматический ретикулум посредством кальциевого насоса.

В саркоплазме мышечных волокон имеются ионы калия (К+). Во время сокращения мышечного волокна ионы калия через калиевые каналы выходят из мышечного волокна в тканевую жидкость, а в саркоплазму мышечного волокна проникают ионы натрия (Na+). После окончания сокращения мышечного волокна посредством натрий-калиевых насосов (Na+— К+) ионы калия закачиваются в саркоплазму мышечного волокна, а ионы натрия – в тканевую жидкость, окружающую мышечные волокна.

Вязкость саркоплазмы

Саркоплазма обладает сравнительно высокой вязкостью, которая еще больше возрастает при возбуждении мышечного волокна. Вследствие этого она оказывает сопротивление укорочению миофибрилл, то есть создает внутреннее трение и в большей или меньшей мере замедляет сокращение или расслабление мышцы.

Основные формы рака

  • Основные формы рака

  • Рак полости рта и ротоглотки

  • Рак губы

  • Рак пищевода

  • Рак желудка

  • Опухоли двенадцатиперстной кишки

  • Рак толстой и прямой кишок рак толстой и прямой кишок

  • Опухоли заднего прохода

  • Рак печени

  • Рак поджелудочной железы

  • Рак желчного пузыря и протоков

  • Вторичные (метастатические) опухоли печени

  • Опухоли сердца

  • Рак полости носа и придаточных пазух

  • Рак гортани и гортаноглотки

  • Опухоли трахеи

  • Рак легкого

  • Метастатические опухоли легких

  • Опухолевые плевриты

  • Злокачественные опухоли костной и хрящевой тканей

  • Меланома

  • Родинки

  • Саркома капоши

  • Опухоли мягких тканей у взрослых

  • Злокачественная мезотелиома

  • Рак молочной железы

  • Рак влагалища

  • Рак матки

  • Трофобластическая болезнь

  • Рак яичников

  • Рак полового члена

  • Рак предстательной железы

  • Рак яичка

  • Злокачественные опухоли почек

  • Рак мочевого пузыря

  • Опухоли головного и спинного мозга у взрослых

  • Внутричерепные метастатические опухоли

  • Опухоли щитовидной железы

  • Рак коры надпочечников

  • Болезнь ходжкина (лимфогранулематоз) у взрослых

  • Неходжкинские лимфомы (лимфосаркомы) у взрослых

  • Множественная миелома

  • Острый лейкоз у взрослых

  • Хронический лейкоз у взрослых

  • Миелодиспластические синдромы

Строение скелетных мышц

Мышечная ткань содержит множество длинных волокон (миоцитов), соединенных в пучок (от 10 до 50 миоцитов в одном пучке). Из этих пучков формируется брюшко скелетной мышцы. Каждый пучок миоцитов, также как и сама мышца, покрыт плотной оболочкой из соединительной ткани. На концах оболочка переходит в сухожилия, которые прикрепляются к костям в нескольких точках.

Между пучками мышечных волокон проходят кровеносные сосуды (капилляры) и нервные волокна.

Каждое волокно состоит из более мелких нитей — миофибрилл. Они состоят из еще более мелких частиц, называемых саркомерами. Они произвольно сокращаются под воздействием нервных импульсов, посылаемых от головного и спинного мозга, производя движение суставов. Хотя наши движения находятся под нашим сознательным контролем, мозг может узнать паттерны движений, так что мы можем выполнять определенные задачи, такие как ходьба, не думая.

Силовые тренировки способствуют увеличению количества миофибрилл мышечного волокна и их поперечного сечения. Сначала увеличивается сила мышцы, а затем — её толщина. Но количество самих мышечных волокон не меняется и оно заложено генетически. Отсюда вывод: те, у кого мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц силовыми тренировками, нежели те, у кого мышцы содержат меньше волокон.

Толщина и количество миофибрилл (поперечное сечение мышцы) определяет силу скелетной мышцы. Показатели силы и мышечной массы возрастают не одинаково: когда мышечная масса увеличивается в два раза, то сила мышц становится в три раза больше.

Есть два типа волокон скелетной мышцы:

  • медленные (ST-волокна)
  • быстрые (FT-волокна)

Медленные волокна также называют красными, поскольку они содержат большое количество белка красного цвета — миоглобина. Эти волокна выносливые, но работают с нагрузкой в пределах 20-25% от максимальной силы мышц.

Быстрые волокна содержат мало миоглобина и поэтому их еще называют белыми. Они сокращаются в два раза быстрее медленных волокон и способны развить силу в десять раз больше.

Когда нагрузка меньше 25% от максимальной мышечной силы, работают медленные волокна. А когда наступает их истощение, работать начинают быстрые волокна. Когда будет израсходована и их энергия, наступает истощение и мышце требуется отдых. Если нагрузка сразу большая, то оба вида волокон работают одновременно.

Разные типы мышц, выполняющие разные функции, имеют разное соотношение быстрых и медленных волокон. Например, бицепс содержит больше быстрых волокон, чем медленных, а камбаловидная мышца состоит в основном из медленных. Какой тип волокон будет преимущественно задействован в работе в данный момент зависит не от скорости выполнения движения, а от усилия, которое необходимо на него потратить.

Соотношение быстрых и медленных волокон в мышцах каждого человека заложено генетически и неизменно всю жизнь.

Скелетные мышцы получили свои названия исходя из формы, расположения, количества мест прикрепления, места присоединения, направления мышечных волокон, функций.

викторина

1. Ученому предлагается проверить два неизвестных образца мышц и определить, какой из них является гладкомышечной, а какой – скелетной. Однако ученый вчера разбил свой микроскоп. Какой из следующих методов позволит ученому идентифицировать гладкую мышцу из скелетной мышцы?A. Положите ткани в решение содержащий бесплатный АТФB. Поместите ткани в раствор, содержащий ионы кальцияC. Тот, кто выглядит сильнее, скелетная мышца

Ответ на вопрос № 1

верно. Помещая ткани в раствор свободной АТФ, мы можем различить гладкую и скелетную мышцы. Скелетные мышцы уже имеют доступ к АТФ и не будут сокращаться при введении в это решение. Гладкая мышца использует ряд белков для ингибирования свободной АТФ и предотвращения работы миозина. В растворе, содержащем много свободного АТФ, гладкие мышцы будут сокращаться. Обе ткани будут сокращаться в растворе ионов кальция, потому что кальций индуцирует обе системы.

2. Гладкомышечные клетки связаны друг с другом через области, называемые адгезивными соединениями. Эти области содержат много волокнистых белков для силы, когда клетки тянутся друг против друга. Соединения также содержат небольшие промежутки, которые позволяют клеточным мембранам двух соседних клеток соединяться. Какова функция этих щелевых соединений, как они называются?A. Отверстия увеличивают прочность соединенияB. Нервные импульсы и химические вещества можно перенести сюдаC. Клетки проходят АТФ через отверстия

Ответ на вопрос № 2

В верно

Когда сокращение происходит в гладкой мышечной ткани, важно, чтобы остальные клетки реагировали. Найденные щелевые соединения между клетками обеспечивают прохождение нервного импульса или химического сигнала, который начал сокращение

Это гарантирует, что многие клетки сжимаются одновременно, производя желаемый эффект для организм,

3. Ниже приведены заявления о гладких мышцах. Выберите неправильное утверждение.A. Гладкая мышца использует те же моторные белки, что и скелетная мышцаB. Гладкая мышца располагается так же, как и скелетная мышцаC. Гладкая мышца не имеет борозд

Ответ на вопрос № 3

В верно. Гладкая мышца не имеет борозд, потому что она расположена иначе, чем скелетная мышца. Расположение не производит темные полосы в клетках, но используются те же моторные белки (актин и миозин).

Что происходит после завершения лечения?

После окончания всей программы лечения больной должен находиться под регулярным врачебным наблюдением. Кроме того, по мере необходимости проводится обследование.

Для ускорения выздоровления и уменьшения симптомов побочных явлений противоопухолевого лечения необходимо по возможности изменить образ жизни.

Так, если Вы курили, то нужно оставить эту вредную привычку. Этот шаг улучшит Ваше общее состояние. Если Вы злоупотребляли алкоголем, что необходимо значительно сократить потребление спиртного.

Качественное и сбалансированное питание с включением достаточного количества овощей и фруктов поможет Вашему восстановлению. Особая диета может потребоваться больным, перенесшим облучение живота, нужные советы можно получить у диетолога.

При появлении у Вас новых или необъяснимых симптомов необходимо срочно обратиться к врачу.

Классификация мышц тела человека

Классифицируют в анатомии все скелетные мышцы по форме, положению в теле, функциям, направлению волокон и типу взаимодействия друг с другом. По форме различают короткие, длинные, широкие. По расположению – наружные или поверхностные, глубокие, внутренние, а также латеральные и медиальные. Такие виды различаются по направлению волокон:

  • параллельные;
  • косые;
  • поперечные;
  • круговые;
  • одно, -двух и многоперистые;
  • полусухожильные;
  • полуперепончатые.

В этой классификации выделяют прямые, лентовидные, веретенообразные. Это простые мышцы.

Есть также двуглавые, трехглавые и 4-главые мышцы. Они относятся к сложным. В эту группу входят гребенчатые, зубчатые, квадратные, дельтовидные, трапециевидные.

Но наиболее известно разделение всех мышц по их функциям. Группы определяются в зависимости от типа выполняемого движения:

  • сгибатели и разгибатели;
  • отводящие и приводящие;
  • наклоняющие вправо-влево;
  • пронаторы и супинаторы;
  • поднимающие – опускающие.

Есть также несколько видов в зависимости от того, как они взаимодействуют друг с другом.

  • Так мышца, которая берет на себя основную нагрузку, называется агонистом.
  • Все, которые помогают ей совершить это действие, работающие вместе – это синергисты.
  • Те, которые противодействуют движению, работающие в другом направлении – это антагонисты.
  • Есть еще стабилизаторы или фиксаторы. Они нужны, чтобы удерживать суставы в правильном положении во время нагрузки.

Лечение

Врачи используют различные методы лечения, по отдельности или в комбинации, чтобы уменьшить симптомы миастении.

Лекарственные препараты

  • Ингибиторы холинэстеразы. Лекарства, такие как пиридостигмин (Местинон) улучшают взаимодействие между нервами и мышцами. Эти препараты не лечат причину заболевания, но они могут улучшить состояние мышц и мышечной силы. Возможные побочные эффекты включают желудочно-кишечные расстройства, повышенное слюноотделение и слезотечение, частое мочеиспускание.
  • Кортикостероиды. Эти препараты оказывают подавляющее действие на иммунную систему, уменьшая выработку антител. Но необходимо учитывать, что длительное применение кортикостероидов может привести к серьезным побочным эффектам, таким как истончение костей, увеличение веса, диабет, повышенный риск некоторых инфекций, увеличение и перераспределение жира в организме.
  • Иммунодепрессанты. Врач может также назначить другие препараты, которые оказывают подавляющее действие на иммунную систему, такие как азатиоприн (Imuran), циклоспорин (Sandimmune, Neoral) или микофенолат (Селлсепта). Побочные эффекты от иммунодепрессантов могут быть серьезными и могут включать в себя повышенный риск инфекций, повреждения печени, бесплодие и повышенный риск развития рака.
  • Плазмаферез. В этой процедуре используется процесс фильтрации, похожий на диализ. Кровь проходит через аппарат, который удаляет антитела, блокирующие передачу сигналов от нервных окончаний на рецепторы мышц. Тем не менее, положительный эффект от плазмафереза обычно длится всего несколько недель. Повторные процедуры могут привести к затруднению доступа к вене, что иногда требует катетеризации в подключичную вену. Кроме того, существует риск падения АД после этой процедуры, а также кровотечения из-за того, что во время процедуры используются антикоагулянты.
  • Внутривенное введение иммуноглобулина. Эта процедура обеспечивает тело нормальными антителами, которые изменяют нарушенную реакцию иммунной системы. Эта процедура имеет более низкий риск побочных эффектов, чем плазмаферез и иммунно подавляющей терапии, но эффект от нее может начаться только через неделю или две и длиться не более 1-2 месяцев. Побочные эффекты, которые обычно являются небольшими, могут включать в себя озноб, головокружение, головная боль и отечность.

Хирургическое лечение

У 15 процентов людей, у которых есть миастения, также отмечается наличие опухоли в вилочковой железе. В таких случаях рекомендуется оперативное лечение и удаление опухоли.Для пациентов с миастенией, у которых нет опухоли в вилочковой железе, удаление железы является достаточно спорным методом лечения.

Хирургическое вмешательство не рекомендуется большинством врачей, если:

  • Симптомы слабо выражены
  • Симптомы связаны только с глазами
  • Возраст старше 60 лет

Образ жизни

Необходимо принимать пищу, когда есть хорошая мышечная сила. Прием пищи необходимо проводить небольшими порциями и необходимо избегать вязкой пищи и отдавать предпочтение мягкой пище

Желательно делать перерывы при жевании пищи.
Необходимо использовать меры предосторожности дома. Надо установить поручни и перила в местах, где может потребоваться поддержка, например, рядом с ванной.
Использование электроприборов и электроинструмента

Там где можно берегите мышечную силу и пользуйтесь электроприборами
Необходимо планировать дела в зависимости от мышечной силы и при необходимости прибегать к помощи других людей.

Состав

Поперечно-полосатая мышечная ткань содержит Т-канальцы, которые обеспечивают высвобождение ионов кальция из саркоплазматической сети .

Скелетные мышцы

Скелетная мышца включает волокна скелетных мышц , кровеносные сосуды, нервные волокна и соединительную ткань. Скелетная мышца обернута эпимизием , что обеспечивает структурную целостность мышцы, несмотря на сокращения. Perimysium организует мышечные волокна, которые заключены в коллагене и эндомизии , во пучки . Каждое мышечное волокно содержит сарколемму , саркоплазму и саркоплазматический ретикулум . Функциональная единица мышечного волокна называется саркомером . Каждая мышечная клетка содержит миофибриллы, состоящие из миофиламентов актина и миозина, повторяющиеся как саркомеры. Многие ядра присутствуют в каждой мышечной клетке, расположенной через равные промежутки времени под сарколеммой.

Основываясь на сократительном и метаболическом фенотипах, скелетные мышцы можно разделить на медленно-окислительные (Тип I) или быстро-окислительные (Тип II).

Сердечная мышца

Сердечная мышца находится между эпикардом и эндокардом в сердце. Клетки сердечной мышцы обычно содержат только одно ядро, расположенное в центральной области. В них много митохондрий и миоглобина. В отличие от скелетных мышц клетки сердечной мышцы одноклеточные. Эти клетки связаны друг с другом вставными дисками , которые содержат щелевые соединения и десмосомы .

РЕЦЕПТОРЫ СКЕЛЕТНОЙ МЫШЦЫ (МЫШЕЧНЫЕ ВЕРЕТЕНА)

Познакомившись с строением нервов, можно обсудить вопрос о рецепторах скелетной мышцы. Можно выделить два основных вида рецепторов, расположенных в скелетной мышце: мышечные веретена и рецепторы Гольджи (сухожильные рецепторы Гольджи).

Мышечные веретена были описаны в середине XIX века немецким физиологом Вильгельмом Кюне (Wilhelm Kühne, 1863). Мышечное веретено представляет собой вытянутую структуру, расширенную посередине, что делает его похожим на веретено, которое в давние времена использовали, когда пряли. Английский физиолог, лауреат Нобелевской премии Чарльз Скотт Шеррингтон одним из первых указал, что мышечные веретена являются чувствительными рецепторами мышцы.

Мышечные веретена расположены внутри мышцы параллельно мышечным волокнам и прикрепляются к эндомизию, окружающему мышечные волокна или к сухожилию. Длина мышечного веретена достигает 10 мм. Ширина мышечного веретена в наиболее широкой его части – капсуле колеблется от 80 до 250 мкм (рис.1)

Рис.1. Строение мышечного веретена

Более подробно строение и функции мышц описаны в моих книгах:

  • Гипертрофия скелетных мышц человека
  • Биомеханика опорно-двигательного аппарата человека

Количество мышечных веретен в мышце колеблется от нескольких десятков до нескольких сотен. Так, в двуглавой мышце плеча имеется 320 веретен, в большой грудной – 450, а в трехглавой мышце плеча – 520. Плотность веретен (то есть количество веретен приходящихся на 1 г массы мышцы) сильно варьирует. Она наибольшая в тыльных мышцах шеи и наименьшая в мышцах конечностей. Так, например в верхней косой мышце головы плотность веретен составляет 42,7 на 1 г массы мышцы, а в двуглавой мышце плеча – 2,0 на 1 г массы мышцы.

Установлено, что мышечные веретена возбуждаются при растягивании мышцы. Растяжение мышцы возникает, когда, например, занимающиеся выполняют упражнения на растяжение или упражнения в уступающем (эксцентрическом режиме). Также растяжение мышц возникает при локомоциях человека – ходьбе, беге, прыжках или езде на велосипеде.

Информация, поступающая от рецепторов мышечных веретен, сообщает нервной системе о том, какова в настоящий момент времени фактическая длина мышцы (ее еще называют текущей длиной – то есть длиной в текущий момент времени) и скорость растяжения мышцы.

Внутри мышечного веретена располагаются тонкие мышечные волокна, которые называются интрафузальными. Их диаметр в 2-3 раза меньше обычных мышечных волокон, называемых экстрафузальными. Интрафузальные мышечные волокна очень маленькие, однако они также могут сокращаться и расслабляться. Интрафузальных мышечных волокон в мышечном веретене немного: от 4 до 14. Следует отметить, что интрафузальные мышечные волокна в веретене имеют собственную иннервацию, которая позволяет регулировать чувствительность мышечного веретена. К интрафузальным мышечным волокнам подходят двигательные мотонейроны (γ-мотонейроны) и от них отходят чувствительные волокна, несущие информацию в ЦНС о длине и скорости растяжения мышцы.  За открытия в этой области шведскому физиологу Рагнару Граниту была присуждена Нобелевская премия.

Благодаря информации, поступающей от мышечных веретен, предотвращается (правда не всегда) повреждение мышцы. Эта информация служит основой для функционирования рефлекса на растяжение.

Литература

  1. Гранит Р. Основы регуляции движений. – М.: Мир, 1973.– 278 с. Ил.
  2. Мак-Комас, А.Дж. Скелетные мышцы. – Киев: Олимпийская литература, 2001.– 407 с.
  3. Самсонова А.В. Моторные и сенсорные компоненты биомеханической структуры физических упражнений: автореф. дис… докт. пед. наук.- СПб, 1998.- 48 с.
  4. Самсонова, А.В. Биомеханика мышц : учебно-методическое пособие /А.В. Самсонова Е.Н. Комиссарова /Под ред. А.В. Самсоновой /Санкт-Петербургский гос. Ун-т физической культуры им. П.Ф. Лесгафта.- СПб,: , 2008.– 127 с.
  5. Самсонова, А.В. Гипертрофия скелетных мышц человека. – СПб: Кинетика, 2018.– 159 с.

Строение и функции

Клеточные элементы мышечной ткани вытянуты в длину, за что получили название «волокна». Цитоплазма клеток содержит тонкие белковые нити миофибриллы, которые могут удлиняться и укорачиваться (табл. 1). Специальные органеллы, выработка энергии митохондриями обеспечивают сокращение и растяжение волокон.

Таблица 1.

Строение и функции мышечной ткани

Виды мышечной ткани Строение Функции Расположение в организме
Поперечно-полосатая Состоит из длинных и толстых волокон (рис. 1). Они образованы путем слияния отдельных клеток. Ядер много. Полосатая исчерченность вызвана чередованием светлых и темных дисков. Волокна объединяются в пучки. Произвольные движения тела, дыхание, мимика лица и ряд других действий. Основа скелетных мышц, языка, глотки, начальной части пищевода.
Гладкая Отдельные веретеновидные клетки имеют небольшие размеры, объединены в пучки (по 5–10 шт.). В каждой клетке одно ядро (рис. 1). Тонкие миофибриллы протянулись между концами клетки. Ткань лишена поперечной полосатости. Непроизвольные сокращения стенок внутренних органов с под влиянием нервных импульсов. Мышечные слои кожи и внутренних органов (пищеварительной системы, мочевого пузыря, кровеносных и лимфатических сосудов, матки).
Поперечно-полосатая сердечная Клетки удлиненные, разветвленной формы, с небольшим количеством ядер, образуют единую сеть (рис. 1). Поперечная полосатость возникает за счет блестящих полосок на соединениях между клетками. «Двигатель» кровообращения. Непроизвольные сокращения сердечной мышцы могут происходить под управлением вегетативного отдела нервной системы. Основная масса сердца.

Рис. 1. Строение и месторасположение мышечных тканей Мышечные ткани обеспечивает передвижение организма в пространстве. Сокращения мышц необходимы для изменения положения отдельных частей тела. Мышцы, помимо двигательной, выполняют защитную и теплообменную функции.

Причины

Нервы передают импульсы мышцам с помощью выброса химических веществ, называемых нейротрансмиттерами, которые попадают точно в рецепторы на мышечных клетках. При миастении, иммунная система вырабатывает антитела, которые блокируют или уничтожают много мышечных рецепторов нейротрансмиттера ацетилхолина. С уменьшением количества действующих рецепторов, мышцы получают меньше нервных сигналов, в результате это приводит к мышечной слабости.

Считается, что вилочковая железа — являющаяся частью иммунной системы, расположенная в верхней части груди под грудиной — может вызвать или способствовать производству этих антител. В младенчестве тимус больших размеров, у здоровых взрослых тимус маленького размера. Но, у некоторых взрослых с миастенией, тимус становится аномально большим. У некоторых пациентов также имеют место опухоли тимуса. Как правило, опухоль вилочковой железы (тимуса) доброкачественная.

Факторы, которые могут ухудшить течение миастении

  • Усталость
  • Болезни
  • Стресс
  • Экстремальная жара
  • Некоторые лекарства — такие как бета-блокаторы, блокаторы кальциевых каналов, хинин и некоторые антибиотики

СОЕДИНИТЕЛЬНОТКАННЫЕ ОБОЛОЧКИ МЫШЦЫ И МЫШЕЧНЫХ ВОЛОКОН

В прошлый раз мы познакомились с тем, из каких основных компонентов состоят наши скелетные мышцы, затем я дала краткую характеристику мышечным волокнам. Теперь мы познакомимся с одним из важных компонентов мышцы – соединительнотканными оболочками. Оболочки из соединительной ткани составляют приблизительно 13% от общего объема мышцы. Силовая тренировка приводит к их утолщению.

Расположение соединительнотканных оболочек мышцы

Если мы разрежем скелетную мышцу поперек мышечных волокон, то увидим, что снаружи скелетная мышца окружена плотной соединительной тканью. Эта оболочка называется эпимизий. Эпимизий представляет собой особенно плотную соединительнотканную оболочку, которая покрывает всю поверхность брюшка мышцы и отделяет ее от других мышц.

В некоторых литературных источниках считается, что фасция и эпимизий – одно и то же. В других – эти компоненты мышц различаются. Так, известные гистологи Артур Хэм и Дэвид Кормак (1983) пишут, что «…вся мышца одета толстой оболочкой из относительно плотной соединительной ткани — эпимизием» С. 242. А вот известный анатом Михаил Федорович Иваницкий (1985) считал, что наружная оболочка мышцы называется фасцией. Он писал: «Фасции, которыми покрыты мышцы, представляют собой фиброзные оболочки, одевающие не только отдельные мышцы, но также и группы мышц». С. 112. Эпимизий он называл наружным перимизием и находил, что его основу составляет рыхлая соединительная ткань. Я больше склоняюсь ко второму варианту и считаю, что фасция и эпимизий – это разные оболочки, рис.1.

Рис.1. Оболочки мышцы и мышечных волокон

Разрезав эпимизий, можно увидеть пучки мышечных волокон как бы «завернутых» в оболочку соединительной ткани. Эта соединительнотканная оболочка называется перимизием. Перимизий также достаточно плотный и относительно толстый. Поперечное сечение пучков мышечных волокон представляет собой фигуру сложной формы. Следует отметить, что перимизий не только окутывает пучки мышечных волокон, но и соединяет их с эпимизием. Разрезав перимизий, можно увидеть отдельные мышечные волокна, окруженные рыхлой соединительной тканью. Эта оболочка называется эндомизием.

На концах мышцы соединительнотканные элементы продолжаются за пределы мышечных волокон и соединяются с прочной соединительной тканью, например, сухожилием.

Более подробно строение и функции мышц описаны в моих книгах:

  • Гипертрофия скелетных мышц человека
  • Биомеханика опорно-двигательного аппарата человека

Функции соединительнотканных оболочек мышцы

Соединительнотканные оболочки мышцы выполняют целый ряд разнообразных функций:

  1. Играют роль «футляров», в которые заключены мышечные волокна, пучки мышечных волокон и вся мышца в целом.
  2. Являются средой для других компонентов мышцы. Так, например, в соединительной ткани перимизия есть каналы для кровеносных и лимфатических сосудов, а также нервов.
  3. Благодаря своей упругости противостоят пассивному и активному растяжению мышцы, тем самым препятствуя ее повреждению.
  4. Передают усилие, развиваемое мышечными волокнами, сухожилию.

Влияние силовой тренировки на соединительную ткань мышцы

Научные исследования свидетельствуют о том, что силовая тренировка приводит к утолщению соединительнотканных оболочек мышцы.

Более подробно этот вопрос описан в видеоролике «Соединительная ткань мышцы. Гистология и биомеханика» на моем канале в YouTube

Литература

  1. Иваницкий М.В. Анатомия человека (с основами динамической и спортивной морфологии): Учебник для ин-тов физ культуры, М.: Физкультура и спорт, 1985.– 544 с.
  2. Мак-Комас А. Дж. Скелетные мышцы человека. – Киев: Олимпийская литература, 2001.- 407 с. (Текст этой монографии А.Дж. Мак-Комаса ориентирован на подготовленного читателя.)
  3. Самсонова, А.В. Гипертрофия скелетных мышц человека. – СПб: Кинетика, 2018. – 159 с. (В этом учебном пособии состав скелетных мышц описан подробно, текст ориентирован на неподготовленного читателя).
  4. Хэм А., Кормак Д. Гистология в пяти томах. Том 3., М.: Мир, 1983 (Текст ориентирован на подготовленного читателя).

Особенности строения гладких мышц

Мышцы данной группы находятся практически во всех важных внутренних органах, таких, как кишечник, желудок, матка, также они присутствуют в стенках сосудов, коже и глазах. Гладкая мускулатура выполняет непроизвольные движения, подчиняясь лишь автоматическим сигналам нервной системы.


Клетки мышц имеют веретенообразную форму, они укорачиваются вследствие скольжения своих нитей. Скорость этого процесса гораздо медленнее, чем у скелетных мышц, благодаря чему они способны долгое время находиться в напряженном состоянии, не затрачивая для этого много энергии.

Важной особенностью гладких мышц является их способность сохранять форму, измененную растяжением или деформацией, а также высокая пластичность, что немаловажно для работы внутренних органов.
Мышцы этой группы характеризуются самым медленным сокращением и расслаблением, которое может продолжаться до нескольких десятков секунд. Также они могут долгое время находиться в состоянии тонуса, практически не утомляясь.
Основные функции гладкой мускулатуры:

  • поддержание давления в полых внутренних органах (мочеточник, кишечник, матка);
  •  сокращаясь, они обеспечивают естественную перистальтику органов и их опорожнение;
  •  регулируют давление в кровеносных сосудах;
  •  в органах зрения обеспечивают расширение и сужение зрачка;
  •  расположенные на кожных покровах, они способствуют выделению подкожного жира.

Из чего состоят мышечные волокна?

Знание основных компонентов  мышечного волокна необходимо для понимания механизмов гипертрофии мышцы (увеличения ее объема), а также ее силы.

Мышечное волокно покрыто оболочкой, которая называется сарколеммой. В оболочке мышечного волокна располагаются особые клетки – клетки-сателлиты. Эти клетки способны делиться. Их деление во многом определяет гипертрофию мышечных волокон.

Весь внутренний объем мышечного волокна заполнен желеобразным содержимым – саркоплазмой. В саркоплазме имеются следующие компоненты:

  • органеллы специального назначения (органеллы, которые отличают мышечное волокно от других клеток);
  • органеллы общего назначения (органеллы, которые присутствуют во всех клетках человека);
  • включения.

Органеллы специального назначения

Органеллами специального назначения являются миофибриллы. Миофибриллы это – длинные тонкие белковые нити, идущие от одного конца мышечного волокна до другого. Количество миофибрилл в мышечном волокне составляет от нескольких сотен до нескольких тысяч. Их главная функция – сократительная.

Органеллы общего назначения

Более подробно строение и функции мышечных волокон описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

К органеллам общего назначения относятся:

  • ядра — органеллы овальной формы, расположенные под сарколеммой (оболочкой мышечного волокна). В ядрах мышечных волокон содержатся молекулы ДНК (дезоксирибонуклеиновой кислоты). ДНК содержит всю генетическую информацию об организме человека. В мышечных волокнах может содержаться до 10000 ядер.
  • эндоплазматическая сеть. Шероховатая эндоплазматическая сеть окружает ядра, на ее поверхности располагаются рибосомы. Гладкая эндоплазматическая сеть (саркоплазматический ретикулум — СР) окружает миофибриллы. СР содержит ионы кальция, необходимые для сокращения миофибрилл.
  • рибосомы — органеллы, на которых синтезируется белок;
  • комплекс Гольджи — мембранная органелла, имеющая вид плоских цистерн, на периферии которых имеются многочисленные мелкие пузырьки. В комплексе Гольджи происходит окончательное формирование структур белков. Затем они сортируются, упаковываются в мембранные пузырьки и транспортируются в другие места, где они необходимы;
  • лизосомы — мембранные органеллы, которые формируются в комплексе Гольджи. Лизосомы содержат большой набор ферментов (до 80). Эти ферменты расщепляют белки, а также поврежденные компоненты мышечных волокон;
  • митохондрии — мембранные органеллы, в которых происходит окисление белков, жиров и углеводов до углекислого газа и воды. В результате этих процессов  синтезируется АТФ.

Включения

Включениями в мышечном волокне являются: различные белки, аминокислоты; АТФ,  креатинфосфат, гликоген, миоглобин, жир, вода и др.

Отличие мышечного волокна от обычной клетки

Несмотря на то, что мышечные волокна часто называют мышечными клетками (миоцитами) из которых состоит мышечная ткань, это не совсем правильно по следующим соображениям:

  1. Наличие клеток-сателлитов.
  2. В обычной клетке имеется только одно ядро, а в мышечном волокне несколько тысяч ядер;
  3. Обычная клетка способна делиться, а мышечное волокно не делится.

В дальнейшем я более подробно остановлюсь на некоторых элементах мышечного волокна, а также на его строении.

(Более подробно этот вопрос освещен в видеоролике «Состав и структура мышечного волокна. из чего состоят мышцы? на моем канале на YouTube)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector