Что это такое свободные радикалы и как они образуются в организме человека

Содержание:

Примеры радикальных действий

Такое течение существует практически в любом обществе. Чтобы лучше уяснить, кто такие радикалы, можно рассмотреть яркий пример. Во время известных событий на Украине политические силы проявили себя достаточно откровенно. Так, радикально настроенные бойцы Правого сектора действовали не просто решительно. В тот момент, когда иные протестующие готовы были идти на компромисс с властями, они заявили о своем намерении довести события до победного конца. Все заявленные требования Майдана Президентом Украины были удовлетворены. Казалось, протест выдохся. Не осталось ни одной идеи, чтобы задержать народ на Майдане. И тут появляется Правый сектор, не собирающийся покидать площадь! Все противостояние переходит в следующую фазу. Радикалы Украины и дальше не оставили своих намерений. Следуя своей идеологии, они не считаются с существованием в этой немаленькой стране иных взглядов, позиций, мнений. Таковы общие принципы этого течения.

Роль свободных радикалов в патологических процессах

Усиление свободнорадикального окисления липидов может привести к нарушению нормальной жизнедеятельности организма и создать условия для развития ряда заболеваний. Признаками участия свободнорадикального окисления липидов в развитии того или иного заболевания, помимо активации свободнорадикального окисления, являются нарастание клин, симптоматики, а также улучшение состояния больного или его полное излечение в результате торможения свободнорадикального окисления липидов в результате терапии антиоксидантами.

Об активации процесса свободно-радикального окисления судят обычно по увеличению содержания в тканях и крови больных Р. с., липидных гидроперекисей, альдегидов, в частности малонового диальдегида, а также по снижению содержания липидных антиоксидантов. Разработан метод регистрации уровня свободнорадикального окисления в организме больных в клин, условиях по содержанию пентана в выдыхаемом воздухе. Усиление свободнорадикального окисления липидов было обнаружено в печени при отравлении четыреххлористым углеродом, алкоголем, солями меди, озоном, кислородом, в коже после УФ-облучения, в очагах гипоксии и воспаления и при ожогах, в сетчатке глаза при чрезмерном освещении, во всех органах и тканях при развитии лучевой болезни (см.) и на определенных стадиях онкогенеза, при некоторых инф. болезнях, авита минозах, воспалительных процессах; в мозге животных усиление свободнорадикального окисления липидов было обнаружено при экспериментальной эпилепсии и т. д. Однако патогенетическая роль свободнорадикального окисления липидов во всех этих случаях пока не ясна.

Состояние больных или животных (в условиях эксперимента) почти всегда значительно улучшается после терапии антиоксидантами; напр., уменьшается эритема, вызванная облучением кожи УФ-светом, снижается токсическое действие на организм четыреххлористого углерода, купируются эпилептические припадки (в эксперименте), увеличиваются сроки консервации клеток и органов. Описано успешное применение антиоксидантов при лечении ожогов и ишемической болезни сердца, связанной с атеросклерозом.

Большое внимание исследователи уделяют роли Р. с

в онкогенезе. Обнаружена корреляция между способностью ряда онкогенов к образованию Р. с. и их онкогенной активностью. Как правило, по мере развития опухоли концентрация Р. с. в тканях снижается в 2—6 раз по сравнению с контролем, а интенсивность свободнорадикального окисления в других тканях организма обычно повышается, особенно на терминальных стадиях болезни, что, возможно, связано с перераспределением антиоксидантов между тканью злокачественной опухоли и другими тканями.

Библиография: Ажипа Я. И. Медико-биологические аспекты применения метода электронного парамагнитного резонанса, М., 1983, библиогр.; Владимиров Ю. А. и Арчаков А. И. Перекисное окисление липидов в биологических мембранах, М., 1972; Журавлев А. И. и Журавлева А. И. Сверхслабое свечение сыворотки крови и его значение в комплексной диагностике, М., 1975; Калмансон А. Э. Применение метода электронного парамагнитного резонанса в биохимии, в кн.: Успехи биол, химии, под ред. Б. Н. Степаненко и др., т. 5, с. 289, М., 1963; Каюшин Л. П., Грибова 3. П. и Азизова О. А. Электронный парамагнитный резонанс фотопроцессов биологических соединений, М., 1973; Козлов Ю. П. Свободные радикалы и их роль в нормальных и патологических процессах, М., 1973; Свободные радикалы в биологии, под ред. У. Прайора, пер. с англ., т. 1—2, М., 1979; Тарусов Б. Н. Первичные процессы лучевого поражения, М., 1962; Эмануэль Н. М., Денисов Е. Т. и Майзус 3. К. Цепные реакции окисления углеводородов в жидкой фазе, М., 1965.

Ю. А. Владимиров, А. И. Журавлев, А. Э. Калмансон.

Самые опасные радикалы

Радикалы играют существенную роль в деятельности организма. Одни выступают в качестве индикаторов, другие требуются для настройки синтезирования различных соединений, а некоторые занимаются борьбой с вредоносными микроорганизмами. Между тем существуют и такие, которые способны нанести серьезный вред биологическим соединениям.

Гидроксильные радикалы наносят самый опасный ущерб организму. Н их долю приходится порядка 50% всех его поражений. Они поражают в первую очередь нуклеиновые кислоты и мембранные белки.

Следующий по агрессивности считают пероксинитрит. Он повреждает белок и это приводит к гибели некоторых ферментов. Пероксинитрит наносит невосполнимый ущерб клеточным мембранам и в результате, может быть осуществлена модификация ДНК.

Свободные радикалы и антиоксиданты

До научной революции начала и середины ХХ века население земли жило относительно спокойно, принимая зачатие, рождение, здоровье, болезни и старение как некую естественную данность. Но после того как в 1950-е годы советский академик Н.Н. Семенов получил Нобелевскую премию за открытие так называемых свободных радикалов, мир буквально сошел с ума: чуть ли не каждый день ученые открывали новые свойства свободных радикалов, постепенно отходя от чистой химии к физике, биологии и, главное, к медицине. С годами люди узнали о том, что старение кожи, развитие онкологических заболеваний, а иногда и бесплодие связаны с этими агрессивными структурами.

В настоящее время свободные радикалы рассматриваются как неполноценные молекулы, которые лишены одного электрона и всячески пытаются его вернуть, отнимая у других, «нормальных» молекул. Из «нормальных» молекул строятся все клетки и ткани организма, поэтому, когда их атакуют свободные радикалы, они окисляются ( то есть отдают свои «родные» электроны «голодным» радикалам ) и запускают необратимый процесс разрушения ткани.

Отнимая у нормальной молекулы заветный электрон, свободный радикал превращается в стабильное соединение, а атакованная молекула становится свободным радикалом. С каждым разом поражается все больше и больше клеток, и круг замыкается. В результате свободнорадикального окисления молекулы, которые раньше были инертными, вступают в химические реакции. Например, молекулы коллагена, столкнувшись с радикалами кислорода, становятся настолько активными, что способны связаться друг с другом. Сшитый коллаген менее эластичен, чем обычный, а накопление таких коллагеновых димеров ведет к старению кожи, появлению морщин.

Самым наглядным примером реакции свободнорадикального окисления является коррозия металлов. Под действием свободных радикалов человеческий организм тоже постепенно «ржавеет» и изнашивается.
 

Как образуются свободные радикалы

Кислород является одним из наиболее важных компонентов для организма. Все живые организмы используют кислород для метаболизма и питательные вещества для того, чтобы производить энергию для жизни. Таким образом, кислород является жизненно важным компонентом для жизни. Кислород медитирует химические реакции, которые усваивают жиры, белки и углеводы для получения энергии. Но кислород имеет высокую реакционную способность атома, который может стать частью потенциально поврежденных молекул которые обычно называют “свободные радикалы.” Свободные радикалы в организме человека, содержащие элемент кислорода являются наиболее распространенным типом частиц, образующихся в живой ткани. Другое название для них является “активные формы кислорода”.

Активные формы кислорода

Активные формы кислорода это термин, который охватывает все высокоактивные кислородсодержащие молекулы, в том числе свободные радикалы. Типы форм кислорода включают гидроксильные, перекись водорода, супероксид анион, оксид азота, синглетный кислород, гипохлорит, а также различные перекиси липидов. Они могут реагировать с мембранными липидами, нуклеиновыми кислотами, белками и ферментами, а также другими небольшими молекулами.

Окислительный стресс

Окислительный стресс означает дисбаланс между прооксидантными и антиоксидантными механизмами. Это приводит к чрезмерному окислительному метаболизму. Это напряжение может быть вызвано несколькими факторами окружающей среды, такими как воздействие загрязняющих веществ, алкоголя, лекарств, инфекции, плохого питания, токсинами, радиацией и т.д.

Контроль свободных радикалов

Как правило, образование свободных радикалов регулируется естественным образом с помощью различных полезных соединений, известных как антиоксиданты. Когда есть дефицит этих антиоксидантов из-за повреждения свободными радикалами последствия могут стать изнурительными.

Антиоксиданты способны стабилизировать или дезактивировать свободные радикалы, прежде чем они нападают на клетки.

Антиоксиданты из пищевых продуктов

Есть несколько питательных веществ в продуктах питания, которые содержат антиоксиданты. Витамин С, витамин Е, а также бета-каротин являются одними из наиболее широко изученных пищевых антиоксидантов.

Витамин С является наиболее важным водорастворимым антиоксидантом в внеклеточной жидкости. Витамин С помогает нейтрализовать в воде или водной фазе, прежде чем он может атаковать липиды.

Витамин Е является наиболее важным жирорастворимым антиоксидантом

Это важно, так как цепной антиоксидант в клеточной мембране. Он может защитить мембрану жирных кислот из перекисного окисления липидов. Витамин С в дополнение способен регенерировать витамин Е

Витамин С в дополнение способен регенерировать витамин Е.

Бета-каротин и другие каротиноиды также обладают антиоксидантными свойствами. Каротиноиды работают во взаимодействии с витамином Е.

Питание с низким содержанием жиров может ухудшить усвоение бета-каротина и витамина Е и других жирорастворимых питательных веществ. Фрукты и овощи являются важным источником витамина С и каротиноидов. Цельные зерна и высококачественные растительные масла являются основными источниками витамина Е.

Многие растительные вещества известны как “фитонутриенты” или “фитохимические». Они также обладают антиоксидантными свойствами. К фитохимическим веществам относятся фенольные соединения, такие как флавоноиды. Они находятся в некоторых фруктах, овощах, экстракте зеленого чая и т.д.

Свободные радикалы способны атаковать здоровые клетки организма что может привести к повреждению и тяжелым заболеваниям. Повреждение клеток, вызванное свободными радикалами, как представляется, одна из основных причин старения и болезней, как:

·       Рак

·       болезнь сердца

·       снижение функции головного мозга

·       снижение иммунной системы и т.д.
В целом неустойчивые частицы участвуют в патогенезе, по крайней мере 50 заболеваний. Так как свободные радикалы содержат неспаренный электрон они неустойчивы и захватывают электроны от других веществ, чтобы нейтрализовать себя. Это первоначально стабилизирует их, но в процессе порождает повреждение другой молекулы. Вскоре начинается цепная реакция и тысячи реакций частиц могут произойти в течение нескольких секунд при первичной реакции.

Как нейтрализовать вредное действие свободных радикалов

Ученые давно занимаются этим вопросом, от решения которого зависит продолжительность жизни человека. Использование сильных антиокислителей (антиоксидантов) – вот то средство, которое они предлагают сегодня. Испробованные на лабораторных животных, антиоксиданты позволили увеличить продолжительность их жизни на 40-50%.

Организм человека способен самостоятельно вырабатывать антиокислители, которых вполне хватает, пока условия жизни не сопряжены со стрессами и вредным воздействием окружающей среды. К таким антиоксидантам относится протеин глутатион, который вырабатывается в печени из аминокислот. Он способен снижать вред от действия наркотиков, курения и радиационного облучения на организм, нейтрализует последствия химиотерапии в лечении онкологических заболеваний, выводит токсины, попадающие в организм вместе с алкоголем, нейтрализует действие тяжелых металлов, что способствует излечению в случае болезней крови и печени. Его действие начинается еще до того, как свободные радикалы могут начать свое разрушающее влияние, глутатион вместе с селеном образует фермент, который нейтрализует образовавшуюся под их действием перекись водорода.

К группе антиоксидантов, которые человек может получить вместе с пищей, относятся витамины: А, С и Е, бета-каротин, куэнзим Q10, микроэлементы: селен, цинк, цистеин; гормоны: мелатонин. Высокими аниоксидантными свойствами обладают некоторые растения: гинко билоба, черника, вытяжка из косточек винограда, зеленый чай, пророщенные зерна сои и пшеницы, свежие овощи и фрукты.

Кроме этого, есть вещества, способные усилить антиокислительное действие витаминов и глутатиона, например, альфа-липоевая кислота, которая также является важным компонентом, обеспечивающим выработку ферментов, превращающих пищу в энергию.

Чем больше открытий происходит в бьюти-индустрии, тем лучше мы, пользователи косметики, должны разбираться в научных терминах. Хотя бы затем, чтобы по достоинству оценить инновационные формулы кремов и понять, какую важную работу они выполняют для нашей кожи. Начнем со свободных радикалов.

  • Что такое свободные радикалы
  • Действие свободных радикалов
  • Свободные радикалы в организме человека
  • Как бороться со свободными радикалами в организме
  • Свободные радикалы и антиоксиданты
  • Как защититься от воздействия свободных радикалов
  • Обзор продуктов с антиоксидантами

Обзор продуктов с антиоксидантами

Антиоксидантный гель для кожи вокруг глаз AOX+ Eye Gel, SkinCeuticals

Формула «сыворотка в геле» борется с морщинами и признаками фотостарения тонкой кожи век. В составе — звездное трио антиоксидантов: L-аскорбиновая и феруловая кислоты, флоретин.

Концентрированный антиоксидантный гель Resveratrol B.E, SkinCeuticals

Ресвератрол — антиоксидант, полученный из кожуры винограда, называют молекулой молодости. Лучше всего он работает по ночам, уничтожая последствия стресса, накопленного в течение дня. Как всегда у SkinCeuticals, основной антиоксидант не работает в одиночку. Здесь его поддерживают байкалин и альфа-токоферол (витамин Е).

Сыворотка широкого спектра действия Phloretin CF, SkinCeuticals

Средство содержит ударную дозу антиоксидантов, в том числе L-аскорбиновую и феруловую кислоты с осветляющими свойствами, и отлично подходит для тех, кто ведет борьбу с пигментными пятнами. Спустя месяц регулярного применения вы заметите, что пигментация стала светлее, а кожа — более упругой и подтянутой. Обязательное условие — поверх сыворотки наносить крем с SPF 30 или 50.

Укрепляющий уход против признаков старения на разных стадиях Slow Age, Vichy

Антивозрастной уход для нормальной и комбинированной кожи Redermic C, La Roche-Posay

Действенное средство для кожи с признаками старения. Высокая концентрация витамина С нейтрализует вред, наносимый клеткам кожи свободными радикалами. Кроме этого антиоксиданта, в формуле работают:

Свободные радикалы в организме человека могут принести сильный вред, а могут и пользу. К счастью, нет такого вируса, способного делать радикалы всесильными. Но они и так могут принести нам сильный вред. В норме они принимают участие в уничтожении инфекции, токсинов. Всё о свободных радикалах – в этой статье.

Доброго времени суток, дорогие мои читатели, с вами Светлана Морозова. Как вы относитесь к химии? Кто-то искренне со школьных лет ненавидел этот предмет, а кто-то, наоборот, тесно связал с химией свою жизнь, везде видит химические соединения, реакции, взаимосвязь. Даже если вы – гуманитарий чистой воды, и точные науки – не ваш конёк, всё равно без знания базовых химических законов никуда. Поэтому разберем, что такое радикалы и откуда они берутся.

Темы предстоящих вебинаров:

  • Как похудеть без силы воли и чтобы вес не вернулся снова?
  • Как снова стать здоровым без таблеток, естественным способом?
  • Откуда берутся камни в почках и что делать, чтобы они не появлялись снова?
  • Как перестать ходить по гинекологам, родить здорового ребёнка и не состариться в 40 лет?

Прием антиоксидантов во время беременности

Избыточное содержание в организме веществ, входящих в антиоксидантную систему, могут оказаться опасными. Об этом следует помнить будущей маме.
 

Чрезмерное стремление обезопасить будущего малыша может привести к отрицательным последствиям:

•    Суточной физиологической нормой витамина А является 0,8 мг. Значительное медикаментозное превышение этой дозы может привести к нарушению развития эмбриона, поэтому максимальное потребление витамина А должно быть не выше трех суточных норм.

•    Суточная потребность в токофероле варьирует от 8 до 12 мг. Гипервитаминоз витамина Е точно не описан, однако есть данные о том, что при длительном чрезмерном поступлении больших количеств токоферола снижался иммунитет и развивались вялотекущие, устойчивые к антибиотикам инфекционные процессы. Кроме того, высокие дозы токоферола снижают свертываемость крови, что повышает риск развития кровотечений, в том числе внутренних.

•    Гипервитаминоз аскорбиновой кислоты не встречается: поступая в организм, она немедленно расходуется на различные нужды, а ее избыток выделяется почками. Суточная норма витамина С равна 50-70 мг. Однако превышение витамина С более чем в 10 раз, связанное с его дополнительным систематическим приемом, усиливает вероятность развития аллергических реакций. Кроме того, повышается проницаемость сосудов, ухудшается питание тканей, вследствие чего нарушается функция плаценты.

•    Нормы и потребность в селене точно не установлены. Безопасным уровнем поступления является 50-200 мг/сутки, но это количество строго индивидуально. При чрезмерном увлечении селеновыми биодобавками может развиться выраженное токсическое действие.

 
 
Типичными симптомами отравления селеном являются повышенное выпадение волос и ломкость ногтей, желтушность кожи и ее шелушение, анемия, потеря аппетита и снижение настроения. С селеном надо быть особенно осторожным беременным женщинам, так как отрицательный эффект от его применения для будущего ребенка может превышать отрицательный эффект влияния свободных радикалов: избыток селена может вызвать выраженный тератогенный эффект, то есть провоцировать формирование пороков развития плода, часто не совместимых с жизнью ребенка.
 

Во избежание недостатка в антиоксидантах, первое, что должна делать молодая мама, — хорошо и полноценно питаться. Свежие фрукты и овощи, вареное мясо, рыбные блюда, достаточное количество молочных продуктов – вот основа питания во время беременности.

Чрезмерного поступления витаминов и микроэлементов и их последующих негативных влияний при потреблении пищи опасаться не стоит и ни в коем случае не следует себя целенаправленно ограничивать.

Общая оценка материала: 4.9

Что такое свободные радикалы: 7 источников поступления

Свободный радикал представляет собой молекулу, которая имеет на внешнем уровне неспаренный электрон. Обычно все электроны распределяются попарно, что обеспечивает энергетический баланс. Но в результате различных реакций, некоторые электроны теряют пару, поэтому происходит образование свободных радикалов.

Чаще всего это связано с такими процессами:

  • Прием в пищу отдельных продуктов (овощи, обработанные пестицидами, консервированное мясо).
  • Эмоциональные потрясения, стрессы.
  • Травмы, избыточные физические нагрузки.
  • Воздействие алкоголя.
  • Вдыхание с табачным дымом.
  • Вдыхание выхлопов автомобилей, промышленных газов.
  • Получение облучения рентгеном или инфракрасным излучением (чрезмерный загар на солнце или в солярии, старые лампы накаливания с вольфрамовыми нитями).

Простыми словами свободные радикалы – это активные химические молекулы, которые разрушают другие молекулы

Постепенно это приводит к развитию различных заболеваний, поэтому важно организовать свой рацион так, чтобы в нем всегда присутствовали антиоксиданты, оберегающие организм от подобных вредных воздействий

Свободные радикалы попадают в клетки тканей и активно взаимодействуют с различными веществами (прежде всего, ДНК и белками), в результате чего образуются новые радикалы (происходит цепная реакция). Это приводит не только к гибели клеток, но и к постепенному нарушению обменного баланса в организме.

Поэтому реакции свободных радикалов приводят к таким последствиям:

  • ослабление иммунитета;
  • появление морщин;
  • общее ухудшение самочувствия, усталость;
  • нарушение обменных процессов;
  • формирование раковых опухолей;
  • развитие опасных патологий (катаракта, глаукома, цирроз, ишемическая болезнь сердца и другие).

Таким образом, роль свободных радикалов для организма преимущественно негативная. Они в буквальном смысле изнашивают организм, постепенно нарушая нормальный метаболизм. Наиболее яркий пример – это разрезанное яблоко, которое быстро темнеет на воздухе из-за воздействия кислорода. Однако стоит опрыснуть его поверхность лимонным соком и фрукт сохраняет свой природный цвет.

В норме свободные радикалы и антиоксиданты (вещества, нейтрализующие их воздействие) всегда присутствуют в организме в определенных количествах. Но как только баланс исчезает, постепенно начинают развиваться болезнетворные процессы. А основной причиной нарушения является поступление радикалов извне с пищей, воздухом и дымом, что во многом связано с вредными привычками человека и неблагоприятной экологической ситуацией.

Важно! Основным объектом атаки радикалов является молекула ДНК, которая несет генетическую информацию. По разным данным она подвергается атаке около 10000 раз за сутки. Поэтому если не принять никаких мер, вредное воздействие молекул отразится на всех тканях и органах

Поэтому если не принять никаких мер, вредное воздействие молекул отразится на всех тканях и органах.

Что такое свободные радикалы?

Свободный радикал — это молекула или атом, имеющий неспаренный электрон на внешней орбите, что обусловливает его агрессивность и способность не только вступать в реакцию с молекулами клеточной мембраны, но также и превращать их в свободные радикалы (самоподдерживающаяся лавинообразная реакция).

Углерод, содержащий радикал вступает в реакцию с молекулярным кислородом, образуя пероксидный свободный радикал СОО.

Пероксидный радикал извлекает водород из боковой цепи ненасыщенных жирных кислот, образуя липидный гидропероксид и еще один углерод содержащий радикал.

Липидные гидропероксиды увеличивают концентрацию цитотоксичных альдегидов, а углерод содержащий радикал поддерживает реакцию формирования пероксидных радикалов и т. д. (по цепочке).

Известны различные механизмы образования свободных радикалов. Один из них — воздействие ионизирующей радиации. В некоторых ситуациях в процессе восстановления молекулярного кислорода присоединяется один электрон вместо двух и образуется высокореактивный супероксидный анион (О). Образование супероксида — это один из защитных механизмов от бактериальной инфекции: без кислородных свободных радикалов нейтрофилы и макрофаги не могут уничтожать бактерии.

Наличие антиоксидантов как в клетке, так и во внеклеточном пространстве указывает на то, что образование свободных радикалов это не эпизодическое явление, обусловленное воздействием ионизирующего излучения или токсинов, а постоянное, сопровождающее реакции окисления в обычных условиях. К основным антиоксидантам относятся ферменты группы супероксидных дисмутаз (SODs), функция которых заключается в каталитическом превращении перекисного аниона в перекись водорода и молекулярный кислород. Поскольку супероксидные дисмутазы встречаются повсеместно, правомерно предположить, что супероксидный анион является одним из основных побочных продуктов всех процессов окисления. Каталазы и пероксидазы превращают образующуюся в процессе дисмутации перекись водорода в воду.

Главной особенностью свободных радикалов является их необычайная химическая активность. Словно чувствуя свою ущербность, они пытаются вернуть себе утраченный электрон, агрессивно отнимая его у других молекул. В свою очередь «обиженные» молекулы тоже становятся радикалами и уже сами начинают разбойничать, отнимая электроны у своих соседей. Любые изменения в молекуле — будь то утрата или присоединение электрона, появление новых атомов или групп атомов — сказываются на ее свойствах. Поэтому свободнорадикальные реакции, протекающие в каком-либо веществе, меняют физико-химические свойства этого вещества.

Наиболее известным примером свободнорадикального процесса является порча масла (прогоркание). Прогорклое масло имеет своеобразный вкус и запах, что объясняется появлением в нем новых веществ, образовавшихся в ходе свободнорадикальных реакций. Самое главное, что участниками свободнорадикальных реакций могут становиться белки, жиры и ДНК живых тканей. Это приводит к развитию разнообразных патологических процессов, повреждающих ткани, старению и развитию злокачественных опухолей.

Наиболее агрессивными из всех свободных радикалов являются свободные радикалы кислорода. Они могут спровоцировать в живой ткани лавину свободнорадикальных реакций последствия которой могут быть катастрофическими. Свободные радикалы кислорода и его активные формы (например, перекиси липидов) могут образовываться в коже и любой другой ткани под действием УФ-излучения, некоторых токсичных веществ, содержащихся воде и воздухе. Но самое главное, что активные формы кислорода образуются при любое воспалении, любом инфекционном процессе, протекающем в коже или любом другом органе, так как именно они являются главным оружием иммунной системы, которым она уничтожает патогенные микроорганизмы.

Скрыться от свободных радикалов нельзя (также как нельзя скрыться от бактерий но от них можно защититься). Существуют вещества, которые отличаются тем, что их свободные радикалы менее агрессивны, чем радикалы других веществ. Отдав свой электрон агрессору, антиоксидант не стремится компенсировать потерю за счет других молекул, вернее, делает это лишь в редких случаях. Поэтому, когда свободный радикал реагирует с антиоксидантом, то он превращается в полноценную молекулу, а антиоксидант становится слабым и малоактивным радикалом. Такие радикалы уже неопасны не создают химического хаоса.

Как связаны свободные радикалы и антиоксиданты?

Свободные радикалы обладают высокой активностью и могут отбирать этот электрон у других молекул. Лишившись электрона, эти молекулы, в свою очередь, превращаются в свободные радикалы и больше непригодны для выполнения своих функций в организме.  

В норме небольшое количество свободных радикалов всегда присутствует в организме, они даже используются для активации некоторых процессов. Количество свободных радикалов контролируют специальные вещества – антиоксиданты. Они вступают в реакцию со свободными радикалами и превращают их в безопасные для организма соединения, но при этом сами не становятся свободными радикалами. Такой процесс называется нейтрализацией свободных радикалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector