Рибоза

В роли питательных веществ

Моносахариды в качестве питательных веществ используются в натуральной и полуискусственной формах.

Но все они играют роль основной «подкормки» для мозга, клетки которого без достаточного количества сахаров не смогли бы правильно работать.

В природе натуральные моносахариды – это:

  • глюкоза (декстроза);
  • фруктоза;
  • галактоза;
  • манноза;
  • рибоза;
  • дезоксирибоза.

Все они являются гексозами, то есть состоят из 6 атомов углерода.

Полуискусственные моносахара

Гексозы (содержат 6 атомов углерода):

  • D и L-аллоза;
  • D и L-альтроза;
  • D и L-фукоза;
  • D и L-гудоза;
  • D-сорбоза;
  • D-тагатоза.

Пентозы (содержат 5 атомов углерода):

  • D и L-арабиноза;
  • D и L-ликсоза;
  • рамноза;
  • D-рибоза;
  • рибулоза и ее синтетическая форма;
  • D-ксилоза (древесный сахар).

Тетрозы (содержат 4 атома углерода):

  • D и L-эритроза;
  • эритрулоза;
  • D и L-треоза.

Примеры продуктов, содержащих моносахариды:

  • фрукты и фруктовые соки (глюкоза, фруктоза);
  • мед (глюкоза, фруктоза);
  • сиропы (глюкоза, фруктоза);
  • десертные вина (глюкоза, фруктоза);
  • напитки (безалкогольные, энергетики, ликеры), шоколад, молочные десерты (в основном глюкоза).

Биохимические свойства

От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.

В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты – последствие окисления альдегидной группы С1 –атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной группы или первичной спиртовой С6– атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.

Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом витамина В2.

Биохимия источников энергии

Как известно, аденозинтрифосфат (АТФ) может в результате цепи биохимических реакций распадаться до аденозина и остатков фосфорной кислоты. Дальнейшая его судьба зависит оттого, какими путями пойдет утилизация продуктов метаболизма. Возможен вывод их из клетки; известно, что при распаде АТФ часть аденозина теряется бесследно. Теоретически, если аденозин внутри клетки распадется на аденин и рибозу, увеличение концентрации последней должно приводить к сдвигу равновесия в сторону аденозина.

Однако, если аденозин покидает клетку и уже вне ее подвергается распаду, экзогенная (введенная извне) рибоза будет оказывать влияние лишь на синтез аденозина из имеющегося в наличии аденина. Следовательно, восполнение запасов АТФ зависит от обоих компонентов.

Кроме того, вследствие сравнительно быстрого ресинтеза АТФ, он относительно мало нуждается в восполнении. Потери вполне покрываются за счет поступления из пищи. Вряд ли реально увеличение его содержания в 4 раза. И уж тем более нереально увеличение производства энергии за счет введения только одного компонента, входящего в состав АТФ. Заметный эффект, а именно увеличение работоспособности, может быть получен при использовании пищевых источников нуклеиновых кислот (дрожжи), но и в таком случае ничего особо грандиозного не происходит.

Таким образом, объяснения, приводимые в рекламных материалах, с точки зрения биохимии выглядят очень сомнительно. А многие исследования, на которые ссылаются авторы, вообще относятся к данной теме лишь косвенно! Некоторые из них посвящены клиническим аспектам метаболизма пуринов при заболеваниях сердечно-сосудистой системы. Причем, хотя говорится о «более чем 150 научных работах», из статьи в статью кочуют три-четыре непонятные ссылки. Поиск в научной литературе позволил отыскать ряд работ по данной теме, однако, из их содержания невозможно сделать однозначные выводы о возможности применения рибозы для повышения силовой работоспособности.

Тем не менее, некоторые специалисты, в том числе у нас в стране, считают рибозу интересным и перспективным продуктом. Ее пытаются применять в силовых видах (особенно культуризме). Впрочем, однозначных результатов, подтверждающих эффективность приема рибозы, до сих пор нет.

Углеводы. Генетический D- ряд сахаров

«Углеводы широко распространены в природе и выполняют в живых
организмах различные важные функции. Они поставляют энергию для биологических
процессов, а также являются исходным материалом для синтеза в организме других
промежуточных или конечных метаболитов. Углеводы имеют общую формулу Cn(H2O)m, откуда и возникло название
этих природных соединений.

Углеводы делятся на простые сахара или моносахариды и полимеры этих
простых сахаров или полисахариды. Среди полисахаридов следует выделить группу
олигосахаридов, содержащих в молекуле от 2 до 10 моносахаридных остатков. К ним
относятся, в частности, дисахариды.

Моносахариды являются гетерофункциональными соединениями. В их молекулах
одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько
гидроксильных групп, т.е. моносахариды представляют собой
полигидроксикарбонильные соединения — полигидроксиальдегиды и
полигидроксикетоны. В зависимости от этого моносахариды подразделяются на
альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится
кетогруппа). Например, глюкоза – это альдоза, а
фруктоза – это кетоза.

 (глюкоза
(альдоза))                    (фруктоза (кетоза))

В зависимости от числа атомов углерода в молекуле
моносахарид называется тетрозой, пентозой, гексозой и т.д. Если объединить
последние два типа классификации, то глюкоза – это альдогексоза, а фруктоза –
кетогексоза. Большинство встречающихся в природе моносахаридов – это пентозы и
гексозы.

Моносахариды изображаются в виде проекционных формул
Фишера, т.е. в виде проекции тетраэдрической модели атомов углерода на
плоскость чертежа. Углеродная цепь в них записывается вертикально. У альдоз
наверху помещают альдегидную группу, у кетоз – соседнюю с карбонильной
первичноспиртовую группу. Атом водорода и гидроксильную группу при
асимметрическом атоме углерода располагают на горизонтальной прямой.
Асимметрический атом углерода находится в образующемся перекрестье двух прямых
и не обозначается символом. С групп, расположенных вверху, начинают нумерацию
углеродной цепи. (Дадим определение асимметрическому атому углерода: это атом
углерода, связанный с четырьмя различными атомами или группами).

Установление абсолютной конфигурации, т.е. истинного
расположения в пространстве заместителей у асимметрического атома углерода
является весьма трудоемкой, а до некоторого времени было даже невыполнимой
задачей. Существует возможность характеризовать соединения путем сравнения их конфигураций
с конфигурациями эталонных соединений, т.е. определять относительные
конфигурации.

Относительная конфигурация моносахаридов определяется по
конфигурационному стандарту – глицериновому альдегиду, которому еще в конце
прошлого столетия произвольно были приписаны определенные конфигурации,
обозначенные как D- и L- глицериновые
альдегиды. С конфигурацией их асимметрических атомов углерода сравнивается
конфигурация наиболее удаленного от карбонильной группы асимметрического атома
углерода моносахарида. В пентозах таким атомом является четвертый атом углерода
4), в гексозах – пятый (С5), т.е.
предпоследние в цепи углеродных атомов. При совпадении конфигурации этих атомов
углерода с конфигурацией D-
глицеринового альдегида моносахарид относят к D- ряду. И, наоборот, при совпадении с конфигурацией L- глицеринового
альдегида считают, что моносахарид принадлежит к L- ряду. Символ D означает, что
гидроксильная группа при соответствующем асимметрическом атоме углерода в
проекции Фишера располагается справа от вертикальной линии, а символ L- что
гидроксильная группа расположена слева.

Что такое рибоза?

D-рибоза обычно встречается в природе и организме человека. Существует также синтетическая версия, известная как L-рибоза, которую нельзя найти в естественной среде. Как выглядит структура D-рибозы с химической точки зрения? Химическая формула С5ЧАС10О5, Это означает, что он содержит пять атомов углерода, 10 атомов водорода и пять атомов кислорода.

Является ли D-рибоза сахаром? Стандартное определение рибозы — это тип простого сахара или углевода, который наш организм производит и затем использует для создания аденозинтрифосфата (АТФ). АТФ — это топливо, сжигаемое митохондриями, обнаруженными в наших клетках. Как вы, возможно, уже знаете, выработка энергии АТФ абсолютно необходима для здоровья, так как АТФ является основной формой энергии организма

Несмотря на то, что D-рибоза является простым сахаром, важно отметить, что она не известна повышением уровня сахара в крови. На самом деле, принимающие добавки часто предупреждают, что они могут снизить уровень сахара в крови

Некоторые из высших производителей этого натурального сахара включают печень, надпочечники и жировые ткани, но сердце, мозг, мышцы и нервные ткани также делают это. Это также компонент аденозина. Аденозин является природным химическим веществом, содержащимся во всех клетках человека, а также доступен в виде добавки.

Медицинские показания

Фибромиалгия

Считается, что рибоза воздействует на фибромиалгию, так как при фибромиалгии наблюдается костно-мышечная боль и повышенная чувствительность, наиболее ярко выраженные при низких уровнях АТФ (компонентом которого является рибоза). Рибоза также оказывает влияние на ткани у спортсменов. На анализе примеров из практики было замечено, что 5г рибозы дважды в день совместно с другими лекарствами (применяемыми при фибромиалгии) заметно облегчили симптомы, которые вернулись спустя неделю после прекращения приёма добавок.
У людей с фибромиалгией или синдромом хронической усталости, при приёме 15г рибозы в день (трижды по 5г) в течение трёх недель, было заметно улучшение в самочувствии, качестве сна и активности, что обуславливается повышением болевого порога. В данном исследовании не было плацебо-группы, поэтому результат нельзя считать непредвзятым (некоторые компании, производящие рибозу, могут быть заинтересованы в положительном результате. Также в данном исследовании принимал участие один учённый, нанятый компанией).

:Tags

Читать еще: Арзерра (Офатумумаб) , Бараклюд (Энтекавир) , Левзея (Левзея сафлоровидная) , Сельдерей (Экстракт семян) , Фентанил ,

Список использованной литературы:

Tullson PC1, et al De novo synthesis of adenine nucleotides in different skeletal muscle fiber types . Am J Physiol. (1988)

Brault JJ1, Terjung RL Purine salvage to adenine nucleotides in different skeletal muscle fiber types . J Appl Physiol (1985). (2001)

Hellsten Y1, Skadhauge L, Bangsbo J Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans . Am J Physiol Regul Integr Comp Physiol. (2004)

Pliml W1, et al Effects of ribose on exercise-induced ischaemia in stable coronary artery disease . Lancet. (1992)

Hellsten Y1, et al AMP deamination and purine exchange in human skeletal muscle during and after intense exercise . J Physiol. (1999)

Hellsten-Westing Y1, et al Decreased resting levels of adenine nucleotides in human skeletal muscle after high-intensity training . J Appl Physiol (1985). (1993)

Srikuea R1, et al Association of fibromyalgia with altered skeletal muscle characteristics which may contribute to postexertional fatigue in postmenopausal women . Arthritis Rheum. (2013)

Teitelbaum JE1, Johnson C, St Cyr J The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study . J Altern Complement Med. (2006)

Строение крахмала и целлюлозы

Состав этих полисахаридов можно выразить общей формулой (C6H10O5)n. Число повторяю­щихся звеньев в макромолекуле крахмала может колебаться от нескольких сотен до нескольких тысяч. Целлюлоза же отли­чается значительно большим числом звеньев и, следова­тельно, молекулярной мас­сой, которая достигает не­скольких миллионов.

Различаются углеводы не только молекулярной мас­сой, но и структурой. Для крахмала характерны два вида структур макромолекул: линейная и развет­вленная. Линейную структуру имеют более мел­кие макромолекулы той части крахмала, которую называют амилозой, а разветвленную структуру имеют молекулы другой составной части крахма­ла — амилопектина.

В крахмале на долю амилозы приходится 10— 20 %, а на долю амилопектина — 80-90 %. Ами­лоза крахмала растворяется в горячей воде, а ами­лопектин только набухает.

Структурные звенья крахмала и целлюлозы по­строены по-разному. Если звено крахмала вклю­чает остатки α-глюкозы, то целлюлоза — остатки β-глюкозы, ориентированные в природные волок­на:

Моносахариды-пентозы

К моносахаридам относятся кетопентозы и альдопентозы. Альдопетозы имеют три асимметрических атома, поэтому существуют в виде восьми пространственных изомеров: D-рибоза и L-рибоза, D-арабиноза и L-арабиноза, D-ксилоза и L-ксилоза, D-ликсоза и L-ликсоза.

У кетопентоз кетонная группа может располагаться у второго или третьего атома углерода. 2-кетопентозы имеют два асимметрических атома углерода, поэтому имеют четыре изомера: D-рибулоза и L-рибулоза, D-ксилулоза и L-ксилулоза. 3-кетопентозы имеют один асимметрический атом углерода и два пространственных изомера: син-3-кетопентоза и анти-3-кетопентоза.

Важнейшими пентозами являются дезоксирибоза и рибоза, относящиеся к моносахаридам, входящим в состав нуклеиновых кислот. В природе также часто встречается D-ксилоза (древесный сахар), которая входит в состав полисахаридов-пентозанов, и L-арабиноза, входящая в состав гемицеллюлоз.

Что такое рибоза?

Рибоза представляет собой простой моносахарид с пятью атомами углерода

Она используется всеми клетками организма и является важной частью энергетического обмена. Она также участвует в формировании нашего генетического материала, ДНК и РНК, некоторых витаминов и других важных клеточных соединений

Основная ее функция сосредоточена на метаболизме клеток, в частности на АТФ (помогает пополнить его запасы). АТФ – это вещество, которое отвечает за производство энергии.

Рибоза обеспечивает энергией в виде АТФ все клетки организма на базовом уровне. Чем больше энергии в организме, тем сильнее бьется сердце, лучше кровообращение и больше силы в мышцах. Чем больше энергии, тем активнее и энергичнее мы будем себя чувствовать.

Она содержится в клетках каждого живого организма: человека, растений и животных. Это один из основных ингредиентов жизни. Поскольку он присутствует почти во всех продуктах питания, мы потребляем небольшую часть этого вещества с каждым укусом чего-либо.

ТОП препаратов

Купить этот препарат в аптеке не получится. Это не лекарство, потому в медицинском учреждении его не продают. Но Вы найдете его в специализированных магазинах со спортивным питанием или БАДами. Но я советую купить средство не там, а на Айхерб. Придется немного подождать, зато Вы не переплатите за доставку, за имя продавца. И точно получите оригинал, а не подделку. ТОП-5 моносахаридных добавок оттуда – в таблице ниже.

Порошок без запаха и вкуса;

Хорошо растворяется в воде;

В 1 порции (1 ч.л.) – 5 грамм;

Добавочных ингредиентов нет;

Сертификация GMP.

Чистое вещество в порошке;

Нет запаха и вкуса;

Разрешено добавлять в кофе;

1 порция – 1 ложка, это 5000 мг (5 гр.);

Вспомогательных компонентов нет.

Добавка в капсулах;

В 1 капсуле – 850 мг;

Рекомендуемая порция – 4250 мг., т.е., 5 капс.;

Вспомогательные ингредиенты: целлюлоза, магния стеарат, кремнезем.

Биодобавка в капсулах;

В 1 шт. – 750 мг;

Суточная норма по инструкции – 6 капс.;

Дополнительные ингредиенты: магний стеарат, гипромеллоза, стеариновая кислота;

Сертификация GMP.

БАД в жевательных таблетках;

Ягодный вкус;

1 шт. – 1 грамм;

Дополнительные компоненты: кситол, натуральная вкусовая добавка, целлюлоза. А также стеариновая кислота, кремнезем, магний стеарат.

Таблица 2. Лучшие препараты.

Итак, D-рибоза, что это такое? Если ответить кратко, то это очень полезное для человека вещество, без которого он выжить не сможет. Но, как и все полезное, употребляйте его дозировано. С умом подходите к вопросам, которые касаются Вашего здоровья.

Химик о строении молекулы рибозы:

Вам также будет интересно:

Полезные свойства ликопина – в продуктах и пищевых добавках

Возможные преимущества глюкозы для здоровья

3.8 калории 

Глюкоза и выполнение упражнений

  • В 1998 исследование, приемом 250 мл 8% раствора глюкозы через каждые 15 мин на подготовленных велосипедистов улучшил время до истощения во время езды на велосипеде на 70% интенсивности на 30%; в другом исследовании, прием внутрь 100 мл 1,6% раствора глюкозы каждые 10 минут на активных, но нетренированных мужчин, длительное время, до изнеможения умеренные физические нагрузки примерно на 20%.
  • В одном из исследований 2000 года, прием 84 граммов глюкозы в 6% растворе тренированными мужчинами не оказал влияния на время до истощения во время тренировки при 83% интенсивности. В одном из исследований 1992 года прием раствора с 4,5% или 17% глюкозы не оказывал существенного влияния на скорость потребления глюкозы (окисления) организмом в течение 80 минут физической нагрузки при 70% интенсивности.

Классификация моносахаридов по генетическому ряду D, L

Все моносахариды содержат асимметричные атомы – атомы углерода, связанные с четырьмя разными заместителями. В структурных формулах такие атомы обычно отмечают звездочкой. Наличие асимметрических атомов в веществе обуславливает пространственную изомерию, то есть разное расположение в пространстве групп –ОН и –Н относительно углеродной цепи.

Например, простейший представитель моноз глицериновый альдегид имеет один асимметрический атом углерода и может находиться в виде двух пространственных изомеров. У одного из них группа –ОН расположена справа от углеродной цепи и его навали D-глицериновый альдегид (от лат. dexter – правый). У другого группа –ОН расположена слева и его называют L-глицериновым альдегидом (от лат. leaves — левый).

Все пространственные изомеры моносахаридов также делят на D- и L. Для определения, к какому генетическому ряду относится моносахарид, его пространственное строение сравнивают со строением глицеринового альдегида. Значение имеет конфигурация последнего, считая от альдегидной группы, асимметрического атома углерода.

Если группы –ОН и –Н расположены здесь так же, как у D-глицеринового альдегида, этот моносахарид относят к D-генетическому ряду, если они расположены, как у L-глицеральдегида — то к L-ряду. Подавляющее большинство встречающихся в природе сахаридов относится к D-генетическому ряду.

Количество пространственных изомеров считают по формуле Фишера: N=2n, где n — количество асимметрических атомов углерода.

Модификации [ править ]

Изменения в природе править

Рибокиназа катализирует превращение d -рибозы в d -рибозо-5-фосфат . После превращения d -рибозо-5-фосфат становится доступным для производства аминокислот триптофана и гистидина или для использования в пентозофосфатном пути . Абсорбция д- рибозы в тонком кишечнике составляет 88–100% (до 200 мг / кг · ч).

Одна важная модификация происходит в положении C2 ‘молекулы рибозы. При добавлении О-алкильной группы ядерное сопротивление РНК увеличивается из-за дополнительных стабилизирующих сил. Эти силы стабилизируются из-за увеличения внутримолекулярной водородной связи и увеличения стабильности гликозидной связи . В результате увеличение сопротивления приводит к увеличению в период полувыведения из миРНК и потенциального терапевтического потенциала в клетках и животных. метилирование рибозы на определенных участках коррелирует с уменьшением иммунной стимуляции.

Синтетические модификации править

Наряду с фосфорилированием молекулы рибофуранозы могут обмениваться кислородом с селеном и серой, чтобы производить аналогичные сахара, которые различаются только в положении 4 ‘. Эти производные более липофильны, чем исходная молекула. Повышенная липофильность делает эти виды более подходящими для использования в таких методах, как ПЦР , пост-модификация РНК-аптамеров , антисмысловая технология и для фазирования рентгеновских кристаллографических данных.

Подобно 2′-модификациям в природе, синтетическая модификация рибозы включает добавление фтора в 2′-положение. Эта фторированная рибоза действует аналогично метилированной рибозе, потому что она способна подавлять иммунную стимуляцию в зависимости от расположения рибозы в цепи ДНК. Большая разница между метилированием и фторированием заключается в том, что последнее происходит только посредством синтетических модификаций. Добавление фтора приводит к усилению стабилизации гликозидной связи и увеличению внутримолекулярных водородных связей.

Моносахариды и сахар в крови

Моносахариды, как и большинство других питательных веществ, всасываются организмом на уровне тонкой кишки. Они могут быть поглощены без предварительной ферментации и расщепления. Более того, все остальные, более сложные углеводы организм «проглатывает» в форме моновеществ. Глюкозу и галактозу человек усваивает легче и быстрее, чем другие углеводы, а для поглощения фруктозы организму требуется больше времени и сил, при этом она всасывается не полностью. После потребления глюкоза и галактоза быстро попадают в кровь и резко повышают уровень сахара, поскольку обладают высоким гликемическим индексом. В это же время фруктоза, благодаря низкому гликемическому показателю, повышает сахар в крови медленнее и мягче.

Взаимо с концентрированной серной кислотой

Концентрированная серная кислота отнимает воду от углеводов, при этом образуется углерод С («обугливание») и вода.

Например, при действии концентрированной серной кислоты на глюкозу образуются углерод и вода

C6H12O6 → 6C + 6H2O

Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (группа альдегида или кетона) и несколько гидроксильных.

Моносахариды являются структурными звеньями олигосахаридов и полисахаридов.

Важнейшие моносахариды

Название и формула Глюкоза

C6H12O6

Фруктоза

C6H12O6

Рибоза

C5H10O5

Структурная формула
Классификация
  • гексоза
  • альдоза
  • в циклической форме – пираноза
  • гексоза
  • кетоза
  • в циклической форме — фураноза
  • пентоза
  • альдоза
  • в циклической форме – фураноза

Глюкоза – это альдегидоспирт (альдоза).

Она содержит шесть атомов углерода, одну альдегидную и пять гидроксогрупп.

Глюкоза существует в растворах не только в виде линейной, но и циклических формах (альфа и бета), которые являются пиранозными (содержат шесть звеньев):

α-глюкоза β-глюкоза

Фруктоза

Ещё один углевод, с которым нам предстоит познакомиться, — фруктоза. Фруктоза представляет собой бесцветное кристаллическое вещество, хорошо растворимое в воде. Фруктоза примерно в два раза слаще глюкозы, она входит в состав пчелиного мёда.

Молекулярная формула фруктозы такая же, как и у глюкозы, — С6Н12О6, то есть она является изомером глюкозы. Вы уже знаете, что в молекуле глюкозы содержится альдегидная группа. В  молекуле фруктозы,   в отличие от глюкозы, имеется кетонная группа:

Кроме кетонной группы, в молекуле фруктозы содержится пять гидроксильных групп. Таким образом, фруктоза является одновременно многоатомным спиртом и кетоном.

Как и глюкоза, фруктоза образует циклические α- и β-формы:

 

Эти формы различаются между собой пространственным расположением гидроксильной группы у второго атома углерода. Из схемы  видно, что, в отличие от глюкозы, для фруктозы характерно образование пятичленных циклов.

Потребность в моносахаридах

Обычно более всего в достаточном потреблении моносахаридов нуждаются люди работающие тяжело физически или умственно, а также спортсмены. Дети, в период интенсивного роста, люди с психическими нарушениями, депрессиями, болезнями пищеварительного тракта, слишком малым весом и во время интоксикации также нуждаются в «сладеньком».

А вот кому стоит более тщательно считать калории и потребление углеводов в сутки, так это лицам с ожирением разных стадий, гипертоникам, пожилым, а также ведущим малоподвижную жизнь.

Кроме того, моносахариды необходимы людям с дефицитом кальция и витамина С, так как эти углеводы помогают усвоению названных полезных веществ.

Понять, что организм испытывает нехватку моносахаридов можно по сниженному сахару в крови, резкому похудению, депрессивных состояниях, а также непокидающему чувству голода. Наоборот, сигналом к уменьшению сладких порций служат дистрофия печени, признаки гипертонии и кислотно-щелочной дисбаланс. Также не стоит злоупотреблять сахарами людям с непереносимостью молочного.

Моносахариды – важная часть нашего ежедневного питания. Они необходимы человеку для пополнения жизненных сил, хорошего настроения и правильной работы мозга. Так позаботьтесь о том, чтобы эти вещества присутствовали в вашем рационе.

  1. Ю. С. Шабаров, Т. С. Орецкая, П. В. Сергиев. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть I, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 82 с.
  2. Ю. С. Шабаров, Т. С. Орецкая. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть II, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 86 с.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Специальность: инфекционист, гастроэнтеролог, пульмонолог .

Общий стаж: 35 лет .

Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

Научная степень: врач высшей категории, кандидат медицинских наук.

Повышение квалификации:

  1. Инфекционные болезни.
  2. Паразитарные заболевания.
  3. Неотложные состояния.
  4. ВИЧ.

Рибоза — моносахарид из группы пентоз с эмпирической формулой С5Н10О5. входит в состав рибонуклеиновой кислоты, аденозина, нуклеотидов и других биологических важных веществ. Открыта в 1905 году.

Рибоза является компонентом РНК и используется при генетической транскрипции. Производная рибозы — дезоксирибоза является компонентом ДНК. Также рибоза является компонентом АТФ и некоторых других веществ, участвующих в метаболизме D-рибоза – это углевод естественным образом присутствующий в организме человека, который жизненно необходим для синтеза АТФ — основной энергетической молекулы клетки. После интенсивных тренировок и стрессов уровень АТФ в клетках значительно снижается. Дополнительное употребление рибозы существенно помогает восстановлению в сердечной мышце и скелетной мускулатуре концентрации АТФ и соответственно энергетических запасов, утраченных при тяжёлой физической работе и интенсивных тренировках. Дополнительный приём рибозы может быть полезен также при ишемических состояниях, когда сокращается поступление кислорода в ткани

Резюме — рибоза против рибулозы

Углеводы — это основные макроэлементы, присутствующие в организме. Моносахариды — это простые сахара, которые обладают способностью синтезировать различные соединения, такие как дисахариды и полисахариды. Рибоза и рибулоза — два моносахарида. Оба являются пентозными сахарами. Рибоза состоит из функциональной альдегидной группы и обычно называется альдопентозным сахаром. Рибулоза известна как кетопентозный сахар из-за наличия кетонной функциональной группы. В этом разница между рибозой и рибулозой. Из-за этих структурных различий рибоза и рибулоза выполняют различные функции в живой системе.

Скачать PDF-версию Рибозы против Рибулозы

Вы можете скачать PDF-версию этой статьи и использовать ее в автономных целях в соответствии с примечанием к цитированию. Пожалуйста, скачайте PDF-версию здесь. Разница между рибозой и рибулозой.

Ссылки:

1. Рид, Даниэль. «Альдоза против сахаров кетозы». Study.com. Доступна здесь. По состоянию на 18 августа 2017 г. 2. Аррингтон, Деррик. «Что такое рибоза? — Структура, обзор ». Study.com. Доступна здесь. По состоянию на 18 августа 2017 г.

Изображение предоставлено:

1. «рибоза (uda3)» от chronoxphya (CC BY 2.0) через Flickr 2. «DL-Ribulose» от NEUROtiker — собственная работа (общественное достояние) через Commons Wikimedia

Строение глюкозы

Состав глюкозы выражается молекулярной формулой Ее структурная формула:

Глюкоза в линейной (открытой) форме содержит альдегидную группу  и пять гидроксильных групп. Поэтому глюкоза относится к полифункциональным органическим соединениям: одновременно является альдегидом и многоатомным спиртом.

По систематической номенклатуре ИЮПАК альдегидная группа по сравнению с гидроксильной группой является старшей функциональной группой. По этой причине нумерация атомов углерода в молекуле глюкозы начинается с атома углерода альдегидной группы.

Изучение строения глюкозы показало, что приведенная выше линейная форма молекулы существует только в разбавленных растворах небольшой концентрации. В твердом виде глюкоза существует в циклических формах.

Образование циклической формы глюкозы легче понять, если рассмотреть межмолекулярную реакцию присоединения спирта к альдегиду:

Следует обратить внимание, что в результате реакции присоединения из карбонильного атома кислорода альдегида образуется новая гидроксильная группа. Образование связей в молекуле глюкозы происходит таким же образом, но внутримолекулярное так как в ее составе имеются и альдегидная, и гидроксильные группы

Образование циклической формы происходит за счет взаимодействия неподеленной пары электронов атома кислорода гидроксильной группы с атомом углерода карбонильной группы молекулы глюкозы (рис. 85).

Двойная связь при этом разрывается, и атом водорода гидроксильной группы присоединяется к кислороду карбонильной группы.

Расположение групп атомов в циклической форме молекулы глюкозы не является произвольным, а строго соответствует ее пространственному строению. При таком способе записи циклической формы молекулы глюкозы предполагается, что плоскость цикла перпендикулярна плоскости листа бумаги, а заместители у атомов углерода расположены над и под плоскостью цикла.

Образовавшаяся новая гидроксильная группа (выделена шрифтом) может находиться под циклом или над циклом, что приводит к двум циклическим формам молекулы глюкозы:  и формам.

Две циклические формы молекулы глюкозы являются разными веществами. Они отличаются друг от друга физическими свойствами (-формы глюкозы 140 °С, -формы глюкозы 150 °С) и пространственным расположением заместителей у атома углерода под номером 1.

В -форме глюкозы гидроксильная группа у первого углеродного атома и группа — находятся по одну сторону цикла, в -форме — по разные стороны цикла (см. рис. 85).

Почему образуются две циклические формы глюкозы? Все три атома альдегидной группы молекулы глюкозы в пространстве находятся в одной плоскости. По этой причине неподеленная электронная пара атома кислорода гидроксильной группы углерода С5 может образовывать химические связи с атомом углерода альдегидной группы как сверху — образуется одна форма, так и снизу — образуется другая форма, т. е. образуются разные пространственные изомеры.

Таким образом, в водном растворе глюкоза одновременно находится в линейной и циклических формах, между которыми устанавливается равновесие.

Модель молекулы глюкозы приведена на рисунке 86.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector