Расчет удельного веса воды

Содержание:

Удельный объем и удельный вес

Если известны конкретные объемы двух веществ, эта информация может использоваться для расчета и сравнения их плотностей.

Сравнение плотности дает удельные значения плотности. Одно из применений удельного веса состоит в том, чтобы предсказать, будет ли вещество плавать или тонуть при помещении на другое вещество.

Например, если вещество А имеет удельный объем 0,358 см. 3 / г, а вещество B имеет удельный объем 0,374 см. 3 / г, принимая обратное значение каждого значения даст плотность. Таким образом, плотность А составляет 2,79 г / см. 3 и плотность B составляет 2,67 г / см. 3 , Удельный вес, сравнивая плотность A с B, составляет 1,04 или удельный вес B по сравнению с A составляет 0,95. A более плотный, чем B, поэтому A погрузится в B или B будет плавать на A.

Откуда пошли названия

Если окунуться глубоко в историю, нужно понять, что для каждого отдельного города, не говоря уже о странах, были свои понятия веса, длины, времени. Мера веса в каждом уголке планеты была своя, его измеряли унциями, фунтами, мерами, пудами и другими единицами, и даже одинаковые названия не гарантировали совпадение веса. То же самое было и с длиной, начиная от мелких измерений и заканчивая расстояниями между городами. Но до конца восемнадцатого века никто бы не понял вопроса «сколько килограмм в 1 литре?», ведь таких названий даже не существовало.

Со временем, когда государства приходили к единоначалию, а международная торговля стала активно развиваться, возникла потребность в универсальной стандартизации. И если внутри каждой отдельно взятой страны унификация измерений произошла практически одновременно с образованием этой самой страны, то к единым международным стандартам мировая общественность подошла во второй половине девятнадцатого века.

Сами названия «метр» и «килограмм» появились во Франции в 1795 году. После победы Французской революции новые власти решили избавиться от всего, что напоминало монархию. Измененные названия месяцев года, дней недели просуществовали совсем недолго, а вот корни новых единиц измерения всего мирового сообщества берут начало именно во Франции. Именно там впервые ответили на вопрос «сколько килограмм в 1 литре воды?».

Плотность воды в зависимости от температуры

Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?

Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.

Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.

В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.

Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице. Плотность воды при различных температурах — таблица

t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл
999,8 0,9998 62 982,1 0,9821 200 864,7 0,8647
0,1 999,8 0,9998 64 981,1 0,9811 210 852,8 0,8528
2 999,9 0,9999 66 980 0,98 220 840,3 0,8403
4 1000 1 68 978,9 0,9789 230 827,3 0,8273
6 999,9 0,9999 70 977,8 0,9778 240 813,6 0,8136
8 999,9 0,9999 72 976,6 0,9766 250 799,2 0,7992
10 999,7 0,9997 74 975,4 0,9754 260 783,9 0,7839
12 999,5 0,9995 76 974,2 0,9742 270 767,8 0,7678
14 999,2 0,9992 78 973 0,973 280 750,5 0,7505
16 999 0,999 80 971,8 0,9718 290 732,1 0,7321
18 998,6 0,9986 82 970,5 0,9705 300 712,2 0,7122
20 998,2 0,9982 84 969,3 0,9693 305 701,7 0,7017
22 997,8 0,9978 86 967,8 0,9678 310 690,6 0,6906
24 997,3 0,9973 88 966,6 0,9666 315 679,1 0,6791
26 996,8 0,9968 90 965,3 0,9653 320 666,9 0,6669
28 996,2 0,9962 92 963,9 0,9639 325 654,1 0,6541
30 995,7 0,9957 94 962,6 0,9626 330 640,5 0,6405
32 995 0,995 96 961,2 0,9612 335 625,9 0,6259
34 994,4 0,9944 98 959,8 0,9598 340 610,1 0,6101
36 993,7 0,9937 100 958,4 0,9584 345 593,2 0,5932
38 993 0,993 105 954,5 0,9545 350 574,5 0,5745
40 992,2 0,9922 110 950,7 0,9507 355 553,3 0,5533
42 991,4 0,9914 115 946,8 0,9468 360 528,3 0,5283
44 990,6 0,9906 120 942,9 0,9429 362 516,6 0,5166
46 989,8 0,9898 125 938,8 0,9388 364 503,5 0,5035
48 988,9 0,9889 130 934,6 0,9346 366 488,5 0,4885
50 988 0,988 140 925,8 0,9258 368 470,6 0,4706
52 987,1 0,9871 150 916,8 0,9168 370 448,4 0,4484
54 986,2 0,9862 160 907,3 0,9073 371 435,2 0,4352
56 985,2 0,9852 170 897,3 0,8973 372 418,1 0,4181
58 984,2 0,9842 180 886,9 0,8869 373 396,2 0,3962
60 983,2 0,9832 190 876 0,876 374,12 317,8 0,3178

Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.

Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.

Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.

Молярная масса элементов и соединений

Соединения — вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

  • соль (хлорид натрия) NaCl
  • сахар (сахароза) C₁₂H₂₂O₁₁
  • уксус (раствор уксусной кислоты) CH₃COOH

Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.

Понятие о плотности, удельном весе и удельном объеме морской воды


Изображение Johannes Plenio с сайта Pixabay

§ 33. Понятие о плотности, удельном весе и удельном объеме морской воды

Плотность — важнейшее физическое свойство морской воды. Ее изменения определяют многие физические и динамические процессы в Мировом океане. Под плотностью, как известно, понимается отношение массы вещества к его объему (m/V=ρ), т. е. это масса единицы объема. Плотность — величина размерная и в системе СИ выражается в килограммах на кубический метр (кг/м3). Плотность пресной воды при 4° С в системе СИ равна 1000 кг/м3, а морской при 15° С — 1020 — 1030 кг/м3 в зависимости от солености. Понятие «плотность» тесно связано с понятием «удельный вес», через который в океанологии принято выражать плотность.

Удельный вес морской воды

Удельный вес морской воды — это отношение веса единицы объема морской воды при температуре t к весу единицы объема дистиллированной воды при той же температуре и нормальном атмосферном давлении.

В океанологии в качестве стандартной принята температура 17,5°С (средняя температура лабораторного помещения), к которой приводится значение удельного веса морской воды, измеренного при любой температуре.

Удельный вес морской воды зависит только от солености и выражается не системной единицей г/см3.

В океанологической практике введено понятие условного удельного веса

(13)

Удельный вес и плотность морской воды незначительно отклоняются от единицы, поэтому для сокращения записи из числа, выражающего удельный вес, вычитают единицу и переносят запятую на три знака вправо. Например, удельный вес ρ17.5 = 1,02624 записывают как 26,24.

Под плотностью морской воды в океанологии понимают удельный вес морской воды при температуре, которую она имела в данном месте, на данной глубине (in situ), отнесенный к дистиллированной воде при температуре ее наибольшей плотности 4° С.

По той же причине малых изменений и необходимости высокой точности определений введено понятие об условной плотности

(19)

При решении некоторых гидрофизических задач вместо Ϭtиспользуется условный удельный вес при 0° С (Ϭ0)

(20)

Во многих гидродинамических расчетах вместо условной плотности удобнее пользоваться обратной ей величиной, называемой удельным объемом, т. е. объем единицы массы

(21)

Так как удельный объем всегда больше 0,9 и меньше 1,0, то по аналогии с условными удельным весом и плотностью введено понятие условного удельного объема

(22)

Океанологические таблицы

На основании лабораторных исследований Комиссии Международного совета по изучению морей (1889 г.) были установлены соотношения между содержанием хлора, соленостью, условным удельным весом и условной плотностью при температуре 0°С. Эмпирические формулы, связывающие эти величины, были использованы для расчета таблиц, опубликованных в различных международных пособиях (впервые в таблицах Кнудсена, 1901 г.) и в отечественных «Океанологических таблицах», составленных Н. Н. Зубовым. В табл. 14 приводится образец таблицы соответствия величин (из «Океанологических таблиц»).

Таблица 14

Соответствие величин Cl, S, Ϭ и ρ17.5

Сl S‰ Ϭ ρ17.5
19,00 34,33 27,58 26,22
19,01 34,34 27,60 26,23
19,02 34,36 27,61 26,24
19,03 34,38 27,63 26,26

С помощью таблиц, определив ареометрированием условный удельный вес ρ17.5, можно получить значения Сl (хлора), S (солености) и Ϭ0 (удельного веса). Определив титрованием содержание хлора, можно получить значения S‰, ρ17.5 и Ϭ0.

В «Океанологических таблицах» приводятся таблицы для прямого определения условной плотности и удельного объема по температуре и солености.

Вас так же могут заинтересовать:

Распределение плотности на Поверхности и по глубинам в Мировом океане

Давление и сжимаемость морской воды. Адиабатические процессы

Post Views: 537

Вязкость жидкостных веществ

Вторым обязательным параметром каждого жидкостного вещества считается вязкость. Данное состояние жидкостного вещества способно производить противодействие любой наружной силе. Все существующие жидкостные вещества оснащены данным свойством. Вязкость формируется как внутреннее трение при сравнительном смещении частиц жидкостного вещества, которые находятся рядом. В реальности имеются как легко движущиеся жидкостные вещества, так и вещества с большой вязкость.

В первую категорию входят воздух и вода. В тяжёлых масляных веществах противодействие осуществляется на другом уровне. Вязкость возможно квалифицировать уровнем текучести жидкостного вещества. Данное явление именуют подвижностью частиц данного вещества, и этот процесс находится в полной зависимости от плотности жидкости. Вязкость жидкостных веществ в условиях лаборатории устанавливают с помощью вискозиметра. Когда вязкость жидкостного вещества находится в большой зависимости исключительно от температурных параметров, тогда различаются некоторое количество главных характеристик жидкости.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Решение задач Контрольные работы Эссе

Увеличивая температурные параметры капельной жидкостного вещества, вязкость стремительно уменьшается. Вязкость газообразной жидкости при данных действиях исключительно растёт. Сила наружного трения в жидкостных веществах создаётся при соответствии скорости градиента к площади пластов, осуществляющих трение. В то же время трение в жидкостных веществах различается от явлений трения в других объектах, в частности, в объектах твёрдого вида. В твёрдых объектах сила трения зависима от стабильного давления, а не от участка поверхностей, которые трутся.

Теплопроводность воды в зависимости от температуры при атмосферном давлении

В таблице представлены значения теплопроводности воды в жидком состоянии при нормальном атмосферном давлении. Теплопроводность воды указана в зависимости от температуры в интервале от 0 до 100°С.

Вода при нагревании становиться более теплопроводной — ее коэффициент теплопроводности увеличивается. Например, при 10°С вода имеет теплопроводность 0,574 Вт/(м·град), а при росте температуры до 95°С величина теплопроводности воды увеличивается до значения 0,682 Вт/(м·град). Теплопроводность воды в зависимости от температуры

t, °С 5 10 15 20 25 30 35 40 50
λ, Вт/(м·град) 0,569 0,572 0,574 0,587 0,599 0,609 0,618 0,627 0,635 0,648
t, °С 55 60 65 70 75 80 85 90 95 100
λ, Вт/(м·град) 0,654 0,659 0,664 0,668 0,671 0,674 0,677 0,68 0,682 0,683

Ссылки [ править ]

  1. ^ Национальный совет экспертов по проектированию и изысканиям (2005). Основы инженерии Поставляется — Справочник (7-е изд.). ISBN  1-932613-00-5 .
  2. ^ Б с д е е Finnemore, JE (2002). Гидромеханика с инженерными приложениями . Нью-Йорк: Макгроу-Хилл. ISBN 0-07-243202-0 . 
  3. ^ Das, Браджа М. (2007). Принципы геотехнической инженерии . Канада: Крис Карсон. ISBN 0-495-07316-4 . 
  4. ^ Транстех Group, Inc. (2012). Основные определения и терминология почв . http://www.intelligentcompaction.com/downloads/IC_RelatedDocs/SoilCmpct_Basic%20definitions%20of%20Soils.pdf (страница просмотрена 7 декабря 2012 г.

Сравнение

Пресная вода всегда будет менее плотной по сравнению с водами, содержащими соли и минеральные элементы. Возьмем для сравнения морскую и соленую.

С морской

Показатель для морской H2O при солености в 35% (среднее общее значение) составляет 1027,81 кг/м3. Но чем выше концентрация солей, тем она будет плотнее.

Обычно это значение, которое было установлено после измерений в разных частях земного шара, варьируется от 1025 до 1033 кг/м3. Соответственно, каждый кубический метр воды океанов будет весить на 27-33 кг больше, чем такой же объем пресной.

При этом наиболее плотной она будет не при положительных значениях температур — +4˚С, а при отрицательных – от -3 °С.


На плотность и количество солей в морской воде оказывает влияние:

  • объем выпадающих виде дождей осадков,
  • интенсивность испарений с их поверхности,
  • температура, до которой нагреваются верхние слои,
  • объем приточной речной воды,
  • есть ли замерзание и таяние льдов.

С соленой

Плотность любой соленой воды зависит от концентрации в ней различных солей. Чем больше концентрация, тем она более плотная, т.е. будет уже не 999,8 кг/м3, а 1000 кг/м3 и более.

То же самое относится и к минеральной воде, в ней также есть соли, а значит, она будет плотнее, чем, например, дождевая, талая или дистиллированная.

Какая плотнее и почему?

Если сравнивать пресную и морскую воду, то последняя всегда будет плотнее из-за содержания солей. Если говорить о температуре, то чем холоднее вода, тем она плотнее, за исключением той, что нагрета от 0 до 4˚С.

Какая вода плотнее — соленая или пресная, видео-эксперимент:

Теплопроводность воды в зависимости от температуры и давления

В таблице приведены значения теплопроводности воды и водяного пара при температурах от 0 до 700°С и давлении от 1 до 500 атм.

Как известно, вода при атмосферном давлении закипает и переходит в пар при температуре 100°С. Коэффициент теплопроводности воды в этих условиях равен 0,683 Вт/(м·град). При увеличении давления растет и температура кипения воды (закон Клапейрона — Клаузиуса). По данным таблицы видно, при давлении в 100 раз выше атмосферного (100 бар) вода находится в виде пара при температуре от 310°С и имеет теплопроводность 0,523 Вт/(м·град).

Таким образом, следует отметить, что изменение давления влияет как на температуру кипения воды, так и на величину ее теплопроводности. Высокая теплопроводность воды достигается за счет роста давления — при повышении давления коэффициент теплопроводности воды увеличивается. Например, при давлении 1 бар и температуре 20°С вода имеет теплопроводность, равную 0,603 Вт/(м·град). При росте давления до 500 бар теплопроводность воды становится равной 0,64 Вт/(м·град) при этой же температуре.

Примечание: Черта под значениями в таблице означает фазовый переход воды в пар, то есть цифры под чертой относятся к пару, а выше ее — к воде. Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000! Размерность теплопроводности воды в таблице Вт/(м·град).

  1. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.
  2. Михеев М.А., Михеева И.М. Основы теплопередачи.
  3. Чубик И.А., Маслов А.М. Справочник по теплофизическим характеристикам пищевых продуктов и полуфабрикатов. М.: «Пищевая промышленность», 1970 — 184 с.
  4. ГСССД 2-77 Вода. Плотность при атмосферном давлении и температурах от 0 до 100°С. М.: Издательство стандартов, 1978 — 6 с.

Аномальные и идеальные жидкостные вещества

Разделяют два типа жидкостных веществ, в соответствии, с их внутренними параметрами:

К идеальным жидкостным веществам относятся воображаемые жидкостные вещества, не подверженные никаким деформациям, таким образом данные вещества не имеют параметров вязкости. Для вычисления вязкости требуется ввести конкретные корректировочные показатели.

Не нашли нужную информацию?

Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.

Гарантия низких цен

Все работы выполняются без посредников, поэтому цены вас приятно удивят.

Доработки и консультации включены в стоимость

В рамках задания они бесплатны и выполняются в оговоренные сроки.

Вернем деньги за невыполненное задание

Если эксперт не справился – гарантируем 100% возврат средств.

Тех.поддержка 7 дней в неделю

Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.

Тысячи проверенных экспертов

Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».

Гарантия возврата денег

Эксперт получил деньги, а работу не выполнил? Только не у нас!

Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока

Гарантия возврата денег

В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы

Зачем и кому нужно знать эти формулы

В любой стране есть стандарты, по которым производится продукция

Неважно, какая это отрасль – пищевая, химическая или другая. Стандарты также могут быть мировыми

Так вот для того чтобы выпускаемая на заводах продукция соответствовала этим стандартам и нужны знания о плотности, массе и объёме.

Но зачем кому-то придерживаться чьих-то правил? Для начала, эти правила взяты не с потолка. К этому пришли разные бизнесмены со всего мира и нашли оптимальное решение, удовлетворяющее как производителей, так и конечных пользователей продукта. Если бы все выпускали продукцию как им вздумается, то людям было бы очень тяжело выбрать производителя. Ведь даже сейчас, со всеми стандартами и ГОСТами выбор просто огромный.

Кроме того, игнорируя физику и математику, можно выработать продукцию себе же в убыток или сделать продукцию, которая не оправдает ожиданий и будет выглядеть не так, как задумывал производитель. Есть и другие ситуации, где необходимы знания подобного рода – при подсчёте планируемого объёма, который займёт продукция на складе; вес продукции, которую нужно будет перевести и т.д.

Эти знания могут потребоваться инженерам, технологам, конструкторам и прочим профессиям, чья деятельность связана с физическими материалами. Конечно, для простого обывателя эти знания могут и не пригодиться. Однако, стоит вспомнить про случай с Архимедом и тогда вы поймёте, что знания – защита от обмана и настоящая сила!

Трактовка понятия

Обозначение удельного веса (УВ) зависит от его толкования: физическое либо статистическое. В первом случае используется величина, измеренная в единице чего-либо. В статистике применяется частный показатель. Он должен измеряться относительно некого целого. Расчёт зависимости: годовой бюджет государства равен 500 млн. На долю расходов на спорт приходится 1 млн рублей, что соответствует 0,2% от всех затрат.

В физике показатель записывается буквой Н — Ньютон. Формула удельного веса и единица измерения: УВ= вес тела/объём. С помощью величины определяется рабочая сила, с какой воздействует на опору 1 куб. метр измеряемого материала. Весом считается векторная величина, которая может иметь направление приложения, описывая общее воздействие тела на иные объекты. Если изменить структуру формулы, воспользовавшись массой тела, получится УВ либо плотность.

Параметр значит, сколько раствора либо вещества содержится в единице объёма. Отношения измеряются в кг/куб. м. Для последнего показателя не характерны изменения, но вес может колебаться с учётом местоположения и высоты падения. Если взаимосвязь между параметрами представить в виде дроби, в которой числитель — масса воды, умноженная на ускорение, тогда можно записать следующее равенство: УВ= плотность х ускорение.

В некоторых случаях искомая может считаться коэффициентом сравнения массы вещества, относительной к воде с аналогичным весом, но температурой в 4 °C. В таких условиях УВ жидкости равен единице. Вес повышается из-за количества примесей.

С учётом полученных данных вычисляется степень концентрации либо размерность компонентов в растворе. Положение применяется в медицине с целью проведения лабораторного анализа мочи. Чтобы вычислить УВ урины, понадобится разделить вес образца на его объём.

В экономике термин используется для обозначения доли некого фактора в общей структуре. Его значение позволяет определить значимость конкретного сектора, его ценности, баланс. Чтобы рассчитать удельный вес в процентах, используется следующая формула: УВ= значение графы таблицы/общая сумма.

В уравнении делитель с делимым выражаются в одной единице измерения. Искомая представляется в процентах/дроби. Такие расчёты в экономике, статистике и социологии необходимы для анализа средних либо общих данных. Вычисления проводятся в специальных программах и на веб-ресурсах. В последнем случае пользователь может воспользоваться онлайн-калькулятором, что значительно упрощает процесс вычислений.

При расчётах специалисты советуют учитывать следующее:

  • Знаменатель представлен как 100%. Сумма величин во всей таблице должна быть меньше знаменателя. Чтобы проверить равенство, нужно сложить процентные доли статей. Результат должен равняться 100%.
  • Итог только положительный, так как представляет долю целого.

Удельный вес в медицине

Удельный вес в медицине – понятие достаточно часто встречаемое. Используют его при проведении анализов. Давно известно, что у.в. воды пропорционален концентрации в ней растворенных веществ, чем их будет больше, тем больше будет удельный вес. У.в. дистиллированной воды при 4 градусах по Цельсию равен 1,000. Отсюда следует, что у.в. мочи может дать представление о количестве растворенных в ней веществ. Отсюда же можно сделать тот или иной диагноз.

Удельный вес мочи человека колеблется в границах от 1,001 до 1,060. Дети раннего возраста имеют менее концентрированную мочу с показателями от 1,002 до 1,030. В первые дни после рождения удельный вес мочи находится в диапазоне от 1,002 до 1,020. Согласно этим данным, врачи могут судить о работе почек и ставить тот или иной диагноз.

Среди множества параметров, характеризующих свойства материалов существует и такой как удельный вес. Иногда применяют термин плотность, но это не совсем верно. Но так или иначе эти оба термина имеют собственные определения и имеют хождение в математике, физике и множестве других наук, в том числе и материаловедении.


Удельный вес

Экономика и социальные науки

В экономике и науках об обществе термин обозначает долю определенного фактора в общей структуре. Это понятие имеет большое значение, так как позволяет судить о значимости какого-либо сектора, его ценности, доле в целом направлении.

Формула удельного веса в экономике: У. в. = Значение отдельной графы таблицы / Сумма всех граф таблицы.

В этом уравнении делимое и делитель выражены в одних и тех же единицах измерения, следовательно, искомая величина будет представлена в виде правильной десятичной дроби или в процентах.

Подобные вычисления проводятся в экономике, хозяйственной деятельности, социологии, статистике и многих других дисциплинах, требующих анализа данных.

При вычислении важно понимать две вещи:

  • Знаменатель дроби представляет собой 100%, и сумма показателей для всех граф таблицы не может его превышать. Так, если сложить процентные доли всех статей бюджета, мы получим 100%, не более и не менее.
  • Результат вычисления не может быть отрицательным, ведь он представляет собой долю целого.

Несмотря на то что две приведенные формулы отличаются друг от друга и оперируют разными величинами, в них все же есть кое-что общее. В обоих случаях вычисляется вес объекта, его значимость, влияние на другие объекты и ситуацию в целом.

Взаимосвязи в пределах модели идеального газа

Влияние температуры на свойства воздуха на ур. моря
Температура Скорость звука Плотность воздуха (из ур. Клапейрона) Акустическое сопротивление
, С c, м·сек −1 ρ, кг·м −3 Z, Н·сек·м −3
+35 351,96 1,1455 403,2
+30 349,08 1,1644 406,5
+25 346,18 1,1839 409,4
+20 343,26 1,2041 413,3
+15 340,31 1,2250 416,9
+10 337,33 1,2466 420,5
+5 334,33 1,2690 424,3
±0 331,30 1,2920 428,0
-5 328,24 1,3163 432,1
-10 325,16 1,3413 436,1
-15 322,04 1,3673 440,3
-20 318,89 1,3943 444,6
-25 315,72 1,4224 449,1

1.1. Температура, давление и плотность

Плотность сухого воздуха может быть вычислена с использованием уравнения Клапейрона для идеального газа при заданных температуре (англ.)

русск. и давлении:

Здесь ρ — плотность воздуха, p — абсолютное давление, R — удельная газовая постоянная для сухого воздуха (287,058 Дж ⁄ (кг·К) ) , T — абсолютная температура в Кельвинах. Таким образом подстановкой получаем:

  • при стандартной атмосфере Международного союза теоретической и прикладной химии (температуре 0°С, давлении 100 КПа, нулевой влажности) плотность воздуха 1,2754 кг ⁄ м³ ;
  • при 20 °C, 101,325 КПа и сухом воздухе плотность атмосферы составляет 1,2041 кг ⁄ м³ .

В приведенной таблице даны различные параметры воздуха, вычисленные на основании соответствующих элементарных формул, в зависимости от температуры (давление взято за 101,325 КПа)

1.2. Влияние влажности воздуха

Под влажностью понимается наличие в воздухе газообразного водяного пара, парциальное давление которого не превосходит давления насыщенного пара для данных атмосферных условий. Добавление водяного пара в воздух приводит к уменьшению его плотности, что объясняется более низкой молярной массой воды (18 гр ⁄ мол ) по сравнению с молярной массой сухого воздуха (29 гр ⁄ мол ). Влажный воздух может рассматриваться как смесь идеальных газов, комбинация плотностей каждого из которых позволяет получить требуемое значение для их смеси. Подобная интерпретация позволяет определение значения плотности с уровнем ошибки менее 0,2% в диапазоне температур от −10 °C до 50 °C и может быть выражена следующим образом:

где — плотность влажного воздуха ( кг ⁄ м³ ); p d — парциальное давление сухого воздуха (Па); R d — универсальная газовая постоянная для сухого воздуха (287,058 Дж ⁄ (кг·К) ); T — температура (K); p v — давление водяного пара (Па) и R v — универсальная постоянная для пара (461,495 Дж ⁄ (кг·К) ). Давление водяного пара может быть определено исходя из относительной влажности:

где p v — давление водяного пара; φ — относительная влажность и p sat — парциальное давление насыщенного пара, последнее может быть представлено в виде следующего упрощенного выражения:

которое дает результат в миллибарах. Давление сухого воздуха p d определяется простой разницей:

где p обозначает абсолютное давление рассматриваемой системы.

1.3. Влияние высоты над уровнем моря в тропосфере

Зависимость давления, температуры и плотности воздуха от высоты по сравнению со стандартной атмосферой (p 0 =101325 Па, T 0=288,15 K, ρ 0 =1,225 кг/м³).

Для вычисления плотности воздуха на определенной высоте в тропосфере могут использоваться следующие параметры (в параметрах атмосферы указано зна­чение для стандартной атмосферы):

  • стандартное атмосферное давление на уровне моря — p 0 = 101325 Па;
  • стандартная температура на уровне моря — T 0 = 288,15 K;
  • ускорение свободного падения над поверхностью Земли — g = 9,80665 м ⁄ сек 2 (при данных вычислениях считается независимой от высоты величиной);
  • скорость падения температуры (англ.)

    русск. с высотой, в пределах тропосферы — L = 0,0065 K ⁄ м ;

  • универсальная газовая постоянная — R = 8,31447 Дж ⁄ (Мол·K) ;
  • молярная масса сухого воздуха — M = 0,0289644 кг ⁄ Мол .

Для тропосферы (т.е. области линейного убывания температуры — это единственное свойство тропосферы, используемое здесь) температура на высоте h над уровнем моря может быть задана формулой:

Давление на высоте h:

Тогда плотность может быть вычислена подстановкой соответствующих данной высоте h температуры T и давления P в формулу:

Эти три формулы (зависимость температуры, давления и плотности от высоты) и использованы для построения графиков, приведенных справа. Графики нормализованы — показывают обший вид поведения параметров. «Нулевые» значения для верных вычислений нужно каждый раз подставлять в соответствии с показаниями соответствующих приборов (градусника и барометра) на данный момент на уровне моря.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector